
Grant & Parr
Decline of life’s energy theory of ageing Decline of life’s energy theory of ageing
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ageing mitochondria
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This article discusses the decline in mitochondrial energy production
capability that occurs as animals age. Correlation is made between
age-related mitochondrial functionality decline, lower growth hormone
(GH) secretion and declining mitochondrial component levels and the
chronic wasting conditions that arise as a consequence. During the past few
years a number of patents have been issued that have utilised compositions
containing the nutraceuticals carnitine, acetyl carnitine and their derivatives
to therapeutically treat problems of energy metabolism. The administration
of carnitine derivatives will improve the quality of living during the period
of life when the body’s energy declines. The significance of the patented
therapeutic use of carnitine derivatives to re-establish mitochondrial
functionality and its relationship to the ageing process are reviewed.
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1. Introduction

Mitochondria are the energy producing organelles that exist in every cell of
the body. The energy created by mitochondria is in the chemical form of
ATP. The sum composite of all the integrated energies of cells of an
organism at any given time can be considered the ‘life-force’ of that
organism. As the organism senesces, there is a progressive decline of this
life-force, i.e. a progressive decline of life’s energy (DOLE). In humans
beyond 30 years of age, life-force declines in an exponential descending
spiral. The decrease in the body’s energy is observed as a steady decline in
the ability to perform work [1]. The loss of the ability of the cells of the body
to produce energy forms the basis of this ‘whole body physical energy’
decline [107]. As a consequence, all people and animals experience
age-related alterations in body composition. For example, as the body’s
cellular energy level declines lean body mass shrinks, adipose mass
expands [2,3], muscle strength declines [4], neural and defence mechanisms
fail and cells slowly but consistently lose the capacity to function. The
degree to which this has occurred, the extent of the decline, is the body’s
‘DOLE status’.
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2. Ageing and energy metabolism

The industrialised world has made dramatic strides
towards curing acute disease causes of death, but the
chronic diseases of old age persist. In 1900, life
expectancy was 47 years and only 2% of persons lived
beyond 60. A century later (2000) nearly 80% of all
people can expect to survive beyond 60, although
average life expectancy is still only near 80. Addition-
ally, only a few percent of all people in the
industrialised world die before the age of 30, after this
age the rate of death due to natural causes increases
exponentially. However, only rarely do individuals
live beyond 90. During this period of exponential
death, as the body weakens, it becomes vulnerable to
chronic wasting diseases such as cancer, cardiovas-
cular conditions and both endocrine and immune
dysfunction. These disease conditions are a reflection
of the DOLE status. In contrast to the years of youth
the body progressively loses its ability to maintain its
functionality after the first third of life. The body
neither effectively repairs cellular tissue damage nor
protects itself from microbes and/or undesirable
cellular proliferation. As a consequence, the body
increasingly loses the ability to oppose and avoid
death. In 1825, Gompertz developed his now famous
equation, a mathematical description of the incidence
of death during the second phase of life [5,6]. It is a
simple exponential expression of increasing mortality
rate with age produced by the age-related energy
decline observed in humans after 30 years of age.

The metabolic mechanisms of ageing have not been
satisfactorily explained by any single classical
discipline. Comprehensive explanations of the
decline of vitality extends beyond simply physiology
and/or biology into physical chemistry, (electron
transport mechanisms, free radical formation) [6-8],
molecular biology, (fatty acid transport, membrane
structure and chromosome replication) and
mathematics (algorithms of endocrine interactions
and cascades).

The ‘rate of living’ theory of ageing suggests that
metabolic rate and longevity are inversely related and
has been a viable explanation for more than half a
century. The theory traces back to experiments of
caloric restriction of rodents which were conducted
starting in 1935 [9-11]. Restricting the caloric intake of
the rodents by ~ 50% while maintaining an otherwise
fully nutritionally complete diet, demonstrated that
calorie restriction extended lifespan by 30 to 50%.
However, the mechanism by which caloric restriction

extends life has been elusive. Many studies have tried
to correlate caloric restriction and a lower energy
consumption with a lower basal metabolic rate
(BMR). This would be analogous to running slower to
facilitate running farther. Although there is an inverse
correlation between BMR and longevity, critical
exceptions exist. For example, rats and pigeons are
about the same size and dimensions. However, the
requirement for flight has significantly increased the
BMR of the pigeons compared to rats, thus an
expected decrease in the pigeon lifespan. The reality
is that the life expectancy of pigeons is several times
that of most rats [6,7]. Additionally, the nutritional
modes (choice of diet) within genera of mammals
affects both longevity and BMR [5,12]. Recently, an
explanation for the longevity of caloric restricted
animals has been offered in a new comprehensive
theory of ageing, the hormonal imbalance-growth
factor exposure theory (HI-GFE theory) [13-15].
Calorie restricted animals show markedly improved
endocrine regulation that is maintained for an
extended period as compared to animals fed ad lib.
Improved hormone regulation in these animals
promotes greater anabolism that stabilises cellular
processes for a longer period.

The HI-GFE theory reasons that the loss of physio-
logical functions in ageing animals is caused by an
imbalance between the operational levels of two of
the most prominent hormones in the body, GH and
insulin. These two hormones are largely responsible
for the maintenance of energy metabolism and
cellular anabolic processes [13-15]. The loss of cellular
functionality is due, not only to a decline in the rate of
production of energy by mitochondria in the cells, but
also to a reduced capacity of the mitochondria to
produce energy (Figure 1).

Optimal mitochondrial energy production levels are
necessary to maintain anabolic processes like protein
and nucleic acid synthesis. Lower cellular energy that
translates into lower anabolic rates also impact growth
factor responses to regulatory signals. Old cells are
clearly unable to generate energy at levels equal to
those of younger animals across all species examined.
The simple fact is, with age comes a loss of mitochon-
drial energy and this DOLE status makes the ageing
body vulnerable to the chronic wasting diseases of
cancer, arteriosclerosis, Alzheimer’s, cardiovascular
conditions and other age-related syndromes.
[19-21,107]. The loss of mitochondrial energy
producing capacity, particularly as it affects anabolic
processes, may be considered one of the root causes
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of the conditions of ‘old age’ [8,13-18] and a weak link
in the maintenance of youthfulness.

The reduced ability of the cells to respond to both
external and internal regulatory signals may be due to
any one of several reasons. These reasons include: the
inadequacy of the hormonal stimulation, the absence
of receptor sensitivity, insufficient secondary
messenger stimulation, intracellular component
deficiencies and/or the insufficient response of
available energy [13-15].

3. Age-related mitochondrial changes

The decline of mitochondrial energy production can
be measured in changes in the mitochondrial
membrane potential, membrane phospholipid and
cardiolipin levels, the respiratory control ratio,
electron transport enzymatic activities, the overall
oxygen consumption and a reduction in electron
transport efficiency. The loss of electron transport
efficiency has the added detrimental effect of
increasing the production of intracellular free radicals
and enhancing oxidative damage [16,19,23,24].

Oxygen is used by the mitochondria in cells to
produce the high energy compound ATP. ATP is used
as an energy source for virtually every species of life
on earth. The energy status of cells, tissues, organs
and the whole body can be defined by the ability to
produce and maintain threshold levels of ATP. The
decline in ATP production is a significant impairment

in old age [16], as can be seen by deductions from
Figures 1 and 2 that infer dramatic declines in protein
synthetic capability with age. As a result anabolic
activity in the body declines to catastrophic levels with
age.

Age-related decrements in mitochondrial energy
production result, at least in part, from changes in
membrane cardiolipin levels, lipid composition and
lipid-protein interactions [25-27]. These changes
directly affect the activities of the enzyme systems that
transport many critical small molecules within the
mitochondria including adenine nucleotide,
acyl-carnitine, pyruvate and phosphate [28-32]. The
changes also directly influence the efficiency of the
electron transport system and maximal energy
producing capacity [33,34]. The mitochondrial inner
membranes differ from membranes in other parts of
the cell in that they contain phospholipids that have
fatty acids with a higher degree of unsaturation, lower
cholesterol and a higher cardiolipin content. Together
with the insulin and GH status of the body, these
factors impact the capacity of mitochondria to
produce energy [35]. Cardiolipin in the mitochondrial
membranes declines significantly with age [36-38],
caused by either a lower biosynthetic rate, or because
of oxidative damage which increases in ageing tissues
[38,39]. In addition to lipids and cardiolipin, the levels
of several other integral components of the mitochon-
dria also decline with age. These include carnitine and
its derivatives, which act as co-factors in the transport
of fatty acids into the mitochondria for β-oxidation
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Figure 1: The declining capacity of mitochondrial respiration with age in human liver. The capacity to produce energy is measured by
the mitochondria’s respiration rates, in the presence (which decline with age) and absence (which are unaltered) of ATP precursors
[20].



and ubiquinone (coenzyme Q10), an electron
transport component [40].

4. Growth hormone

The age-related alterations in body composition that
become evident during adulthood include a progres-
sive contraction in lean body mass and an increase in
adipose tissue. These structural changes have been
considered an unavoidable result of ageing [2,3,42].
The loss of lean body mass is the consequence of a
lower ability to synthesise protein because of the
lower level of energy production. There is a 60%
decline in the maximum work output capacity
between the ages of 30 and 70 years [1,4,41]. The
atrophy of lean mass affects skeletal muscle, liver,
kidneys, spleen, skin and bone and has been
proposed to be the result of the reduced secretion and
availability of GH [43-50,90,91].

Although a number of hormones have been shown to
influence mitochondrial function, GH is the most
effective in restoring the age declined mitochondrial
energy metabolism and membrane composition to
normal [52-56]. The correlation of diminished GH
secretion with increasing age is seen in all mammals
studied (Figure 3) [58,59] including calorie restricted
animals [60]. This does not mean a decreased
capability of secreting GH with age. Under fasting
conditions, older humans can secrete more than twice

the GH as non-fasting young adults [59]; GH respon-
siveness to releasing hormone does not vary with age
[61]. This is relevant to therapeutic treatment of the
aged due to the significant tissue rejuvenating effects
of exogenous GH in elderly humans [62,63].

One of the physiological effects of GH is to regulate
the oxidative degradation of fatty acids (lipolysis)
within mitochondria [23,64]. GH secretion occurs as a
pulse during the early portion of human sleep;
nocturnal rates of lipolysis are profoundly depressed
by the absence of GH [65-71] and in ageing [68]. The
loss of the pituitary gland lowers mitochondrial
maximal energy production which is reflected in both
decreased protein synthesis and mitochondrial
protein turnover [70-72]. These changes are the
consequence of increases in the degree of unsatura-
tion and chain length of fatty acids producing softer,
less rigid membranes and a 25 - 30% decrease in
cardiolipin. In humans, functional and maximal
mitochondrial energy production capacity is restored
by daily GH injections. In vivo time course studies
have shown that GH first changes the mitochondrial
fatty acid composition, then improves respiration and
energy production [35,52,55].

5. Cardiolipin

Cardiolipin is a phospholipid found almost
exclusively in the inner membranes of mitochondria
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and its integrity is critical for maximal energy produc-
tion and the functioning of the enzymes of the
electron transport system. Membrane functionality is
determined by its composition. Although the
composition of membranes varies with the quality
and quantity of fat intake from the diet [73], the
mitochondrial membranes function maximally only
when the cardiolipin levels and the fatty acid
composition is optimal [76].

A profound decrease in cardiolipin levels occurs
during the course of the life of humans and animals
[76,77]. This decrease parallels both a lower ratio of
the maximal to basal mitochondrial energy producing
capabilities (see Figure 2) [23,24] and a loss of inner
mitochondrial membrane potential. For example, it
was shown that a 75 year old woman had a 57% lower
epidermal cardiolipin level relative to a 9 year old girl
[74,75]. Calorie restricted animals, as compared to ad
lib. fed animals, have an increased level of specific
inner mitochondrial membrane unsaturated fatty
acids as they age [81] that are instrumental to
cardiolipin function [77]. The reduction of cardiolipin
with increasing age is accompanied by a higher
production of mitochondrial free radicals [64,79] and a
lower level of anti-oxidant enzymes [78].

6. Acetyl-L-carnitine

Carnitine has two critical functions in the cell. Firstly, it
facilitates fatty acid oxidation by acting as a co-factor

in the transport of acyl groups across the inner
mitochondrial membrane. Secondly, it functions to
remove toxic acyl groups from the mitochondria and
cell as esters. L-Carnitine and acetyl-L-carnitine
(ALCAR) can be made endogenously or can be
obtained from the diet. Together with acetyl CoA, they
are essential co-factors in the steps of fatty acid
transport through the outer membranes of the
mitochondria. The steps shown in Figure 4 are:

• Long chain free fatty acids are combined with CoA
in the presence of ATP to form acyl CoA.

• The acyl-group of acyl CoA is esterified to carnitine
forming an acyl-carnitine via the enzyme
acyl-carnitine transferase-1.

• These acyl-carnitine esters are then transported
into the mitochondrial matrix by carnitine translo-
case, a protein located within the inner mitochon-
drial membrane.

• Once in the mitochondria, the acyl-carnitine esters
are converted back to acyl-CoA through the action
of the enzyme, acyl-carnitine transferase-2.

• Acyl-CoA undergoes β-oxidation and the final
product enters the Krebs cycle, which results in
energy production [60].

A deficiency of L-carnitine interferes with the
transport of fatty acids into the mitochondria
producing an accumulation of both free fatty acids in
the cytoplasm and acyl CoA within the mitochondria.
The reduced level of fatty acids in the mitochondria
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limits β-oxidation and yields lower energy produc-
tion. As a result, the lower energy production
translates into a lower level of protein synthesis in
aged animals. Insufficient synthesis of muscle
proteins lowers lean body mass. The fatty acids
unused for energy production are stored as adipose
tissue.

Pharmacological treatment of older animals with
ALCAR improves overall mitochondrial function
[101,105]. In aged animals the cardiolipin is one third
lower than in younger counterparts, however,
following treatment with ALCAR the mitochondrial
status returns to normal [76,92]. These significant
status reversals are due to the increases in cardiolipin
content of mitochondrial membranes and activities of
the mitochondrial enzymes [77]. Both cardiolipin
levels and the higher frequency of unsaturated
cardiolipin found in mitochondria of youthful animals
[77,80] are restored by elevated ALCAR. These
changes lead to higher transcription of the mitochon-
drial DNA, improved protein synthesis levels and
improvements in functional capabilities of inner
membrane bound mitochondrial enzyme systems,
including fatty acid oxidation [76,77,80,81]. Carnitine
stimulates the repair of mitochondrial membranes and
returns functionality to mitochondria. Thus, the
mitochondrial membranes that have changed over
time are restored to the integrity to those of young
animals by ALCAR [23,24,70].

7. Therapeutics

The therapeutic revitalisation of the body’s energy
supply has been the main thrust of a significant
number of recent patents. Many of the patents teach
the utilisation of compositions containing carnitine
and its derivatives and/or Coenzyme Q10 to treat the
symptoms of disease conditions. However, it is
apparent that the pharmacological uses of these
mitochondrial components have the ‘whole body’
effect of improving all cellular functions by
stimulating energy productive capabilities. This
cellular stimulation is facilitated by carnitine which
upgrades both mitochondrial membrane maintenance
and general energy metabolism and thereby all
anabolic processes. L-Carnitine, and especially
ALCAR, holds considerable potential as a therapeutic
agent for the treatment of a variety of neural and
muscle related conditions due to the high energy
requirements of these tissues. Energy deficiencies are
reflected in the chronic symptoms of the diseases of
old age. These conditions include depression, chronic
fatigue, attention deficit/hyperactivity disorder,
ischaemic cardiac diseases [82], angina pectoris and
hypotonia of skeletal muscles [107].

The plethora of patents teaching the uses of composi-
tions containing carnitine and its derivatives address
disease and metabolic conditions that arise as a
consequence of changing metabolism. The symptoms
treated with these compositions can generally be
classed as deficiencies of the body’s repair and
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maintenance systems [105,107]. The most significant
patents from a medical prospective (such as a remedy
for cardiac ischaemia [105] or bone loss [121-123]) are
those that are likely to be the least significant from an
economic standpoint (such as hair restoration or
weight loss [101-104,124,125]). Carnitine composi-
tions are patented for the treatment of osteoarthritis
[123] and osteoporosis [83-86,121,123], because of the
ability of carnitine to stimulate mitochondrial reactiva-
tion and upgrade the anabolic regulation of the cells
that manufacture the basal components of these
tissues[116,117], bone (osteoblasts) [121,122] and
cartilage (chondrocytes) [123]. Alleviating symptoms
of various nervous conditions, anxiety, depression
[108,109] , chronic fat igue [110] , at tent ion
deficit/hyperactivity disorder and even alcohol
withdrawal symptoms [111,112] are claimed by other
carnitine patents.

Possibly the most economically significant of the
carnitine related patents concerns the use of composi-
tions to control obesity [101] and pathological
conditions of defective lipid metabolism. The
improved mitochondrial energy metabolism not only
burns fatty acids but also stimulates an increased
protein synthesis that increases the body’s lean mass.
The change in lipid metabolism that results from
carnitine administration leads to reduced hyperlipi-
daemia, alleviates high cholesterol conditions
[102,103] and reportedly even reduces the appetite of
obese patients [104].

Specific formulations can directly cause the catabo-
lism of excess fatty acid utilising the revitalised
mitochondria. The AMBI patented composition and
its application [101] turns the mitochondria into an
apparent furnace for burning fatty acids to promote
fat and weight loss. The compositions of the patent
are designed to cause/trick the mechanisms of the
mitochondria to work without producing the normal
quotient of energy as ATP. Together with carnitine
derivatives the patented composition contains
hydroxy-citrate and pyruvate. The unique composi-
tion uncouples the normal electron transport system’s
mechanisms of production of ATP from the oxidation
of fatty acids. The ingenious process is simply
designed to burn fat, without any other apparent
benefits. However, it would appear that the process
would produce a large amount of free radicals and
consequently excessive cellular oxidative damage.
Addition of a series of both lipotrophic and
hydrophilic anti-oxidants would seem necessary to
thwart the potential damage produced [113-115]

The consequences of improved energy metabolism
teach several other patented uses for carnitine
compositions. Specifically the epithelial benefits from
carnitine administration are reflected in increased hair
growth [124], hair follicles [125] and benefits to the
condition of the patient’s skin [119].

A recent patent submission [120] claims a technique of
oral administration of a combination of the readily
available nutraceutical ALCAR and the basic amino
acid, L-ornithine, to elevate age declined GH release.
The micromolar amounts of L-ornithine that were
administered incrementally elevated the stimulated
GH release to youthful levels and consequently the
nexus of improved cardiolipin maintenance and
elevated fat metabolism. This surprising effect seems
to indicate a feed back relationship between the
mitochondrial energy production capability and the
levels of GH release. The modulation of age-related
GH decline, either by injected GH, by GH secreta-
gogues or using this new ALCAR/ornithine method
reverses the decline in maximal mitochondrial energy
production and the consequent declines in anabolic
maintenance.

8. Expert opinion

The decline in energy production and energy
producing capacity is a significant contributing factor
to the chronic medical conditions that increase in
parallel to the ageing process. In fact, in our opinion,
it is one of the weakest links in the chain of life. Many
medical conditions are alleviated by the stimulation of
mitochondrial energy production by using, or by the
administration of, simple carnitine-derived nutraceuti-
cals. This realisation has generated a wide
cross-section of recent therapeutic patents. The most
likely economically impacting patents will be those
used for weight control and to reverse obesity and its
related problems such as cardiovascular, diabetic and
other conditions. However, the most exciting impact
is the use of the energy revitalisation compositions to
enhance anabolic processes and reverse age-related
functionality decline. The age-related conditions such
as osteoporosis, loss of skeletal muscle strength (loss
of lean body mass), increase in adipose mass, osteoar-
thritis, hair loss and loss of skin tone all respond to an
improvement in the body’s energy metabolism. As a
consequence the utilisation of carnitine and its deriva-
tive will lead to an improvement in the quality of
living during the later stages of life by revitalising the
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mitochondria and reversing the declining level of the
body’s energy metabolism.
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