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Abstract
Magnesium (Mg) is essential for cell functions such as transport of calcium and potassium ions,
and modulates signal transduction, energy metabolism, and cell proliferation. Several studies
elucidated a reduced concentration of Mg in patients with Parkinson’s disease (PD), and
experimentally, severe loss of dopaminergic neurons exclusively in the substantia nigra in 1-year-
old rats that had been subjected to continuously low Mg intake (one-fifth of the normal level)
over generations. A study conducted by the authors revealed a significant and striking effect of
Mg to prevent neurite and neuron pathology, and also to ameliorate neurite pathology in a rat
Parkinson disease (PD) model involving culture of ventral mesencephalic-striatal cells with 1-
methyl-4-phenylpyridinium (MPP+). Mg is expected to prevent and ameliorate Parkinson’s
disease in cases where it would be able to cross into the brain in a suitable way.

Introduction
Parkinson’s disease (PD) is a neurodegenerative disease occurring in middle-aged and aged
humans characterized by clinical symptoms including tremor and rigidity (Parkinson, 1817). It
has been reported that almost 90% of the patients are sporadic and 10% are familial. Sporadic PD
shows neuropathological features involving the appearance of Lewy bodies (Lewy, 1912;
Tretiakoff, 1919) and loss of neurons in the substantia nigra (Figures 1 and 2) and substantia
innominata. After establishment of the disease as an entity, it was revealed that dopaminergic
neurons in the ventral tegmental area, noradren- ergic neurons in the locus coeruleus and motor
vagal nucleus, serotonergic neurons in the dorsal raphe nucleus, and neurons in the sympathetic
ganglia and visceral autonomic nervous system are involved in the disease with neuronal loss
and presence of Lewy bodies (Jellinger, 1999). In the present manuscript, the authors review the
role of magnesium (Mg) in the pathogenesis and patho- mechanisms in clinical and basic aspects
of PD.

Figure 1.

Midbrain and upper pons. The substantia nigra and locus
coeruleus in the patient with Parkinson’s disease show
marked depigmentation as compared with those of controls.

Figure 2.

The substantia nigra of a patient with Parkinson’s disease
shows severe loss of neurons as compared with a control
subject. Some remaining neurons represent Lewy bodies.
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Mg in Parkinson’s disease and related diseases
Uitti et al., (1989) analysed four brain regions (frontal cortex, caudate nucleus, substantia nigra
and cerebellum) for concentrations of 24 metals (Ag, Al, As, B, Be, Ca, Cd, Co, Cr, Cu, Fe, K,
Pb, Mg, Mn, Mo, Na, Ni, P, Se, Ti, V, W, Zn) by atomic absorption and atomic emission
spectroscopy in brains of 9 patients with PD, 15 patients with other chronic neurological diseases
and 12 subjects of controls. The results were that brains of PD and parkinsonism secondary to
neurofibrillary tangle disease showed lower concentrations of Mg in the caudate nucleus and
copper in the substantia nigra than control brains. Barbiloni et al., (1999) performed in vivo
phosphorus magnetic resonance spectroscopy on the occipital lobes of 13 patients with PD, 15
patients with multiple system atrophy and 16 age-matched healthy subjects. They reported that
patients with PD showed significantly increased contents of inorganic phosphate (Pi), decreased
cytosolic free [Mg ], and unchanged phosphocreatine and pH. Bocca et al., (2006) examined
concentrations of Ca, Cu, Fe, Mg, Si and Zn by inductively coupled plasma atomic emission
spectrometry (ICP-AES) in blood, urine and cerebrospinal fluid (CSF) of 91 PD patients and 18
controls. They concluded that Mg concentration in CSF of PD patients decreased with the
duration and severity of the disease.

It has been proposed that Mg deficiency is involved in the pathogenesis of parkinsonism-
dementia complex (PDC) and amyotrophic lateral sclerosis (ALS) in the Chamorro population
on Guam, which is a member of the Mariana Islands in the western Pacific Ocean, as well as in
the Kii peninsula of Japan and in West New Guinea (Yase 1978, Garruto et al., 1984). PDC is a
disease entity that was established by Hirano et al., (1961a; 1961b) that affects the neurons in the
substantia nigra, brainstem, and temporal and frontal cortex. The disease is characterized by the
presence of neurofibrillary tangles in the remaining neurons, and disease-specific granular hazy
inclusions in the astrocytes (Oyanagi et al., 1997; Oyanagi, 2005), tau-positive fine granules in
the cerebral white matter (Yamazaki et al., 2005), and widespread TDP-43-immunopositive
inclusions (Hasegawa et al., 2007). Patients exhibit parkinsonism and dementia, and usually die
within about 5 years from infectious diseases (Hirano et al., 1961a; 1961b; Chen and Chase,
1985). ALS is a motor neuron disease affecting the Betz cells in the cerebral cortex, and facial
and hypoglossal nuclei in the brainstem and anterior horn cells in the spinal cord, and usually
patients die of respiratory failure within 5 years after the onset.

Possible pathomechanisms in Parkinson’s disease

Mitochondrial damage and oxidative stress

Increased expression of 4-hydroxy-2-nonenal (HNE) (Yoritaka et al., 1996), decreased activity of
mitochondrial complex I and a decreased amountof alpha-ketoglutarate dehydrogenase complex
(KGDHC) in the pigmented neurons of the substantia nigra (Hattori et al., 1991; Mizuno et al.,
1994) have been reported in affected patients. In the substantia nigra, decreased activity of
catalase and peroxidase (Ambani et al., 1975) and increased amounts of protein carbonyls, 8-
hydroxy-2'-deoxyguanosine (8-OHdG)/8-hydroxy- guanine (8-OHG), 4-hydroxynonenal-lysine
and malondialdehyde-lysine (MDAL) (Alam et al., 1997a,b; Zhang et al., 1999; Dalfo et al.,
2005) have been reported.

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was the first human parkinsonian agent to
be characterized. It is converted to 1-methyl-4- phenylpyridinium (MPP ) by monoamine
oxidase B in astrocytes. MPP  damages mitochondrial complex I of dopaminergic neurons after
transfer by the dopamine transporter, and increased calcium permeability of the mitochondrial
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membrane induces free radicals (Smeyne et al., 2005). MPP  has been used to induce selective
degeneration of dopaminergic neurons in an experimental model of PD (Nakamura et al., 2000).
In addition, rotenone, 6-hydroxydopamine (6-OHDA), paraquat and annonacin have been used
as noxious agents to create in vivo models of PD (Fornai et al., 2003; Champy et al., 2004; Bove
et al., 2005) (Figure 3). Dopamine and dopamine quinones themselves are considered to be
causes of oxidative stress. PINK1 (PTEN-induced putative kinase 1) maintains mitochondrial
function and the gene is causative in some familial PD (Valente et al., 2004).

Figure 3.

Possible relationship between mito- chondria, rough ER and
Lewy body formation.

Unfolded protein retention and endoplasmic reticulum stress

Alpha-synuclein was found as a main component of the Lewy bodies and the gene was found to
be a causative gene of a rare autosomal dominant PD (Polymeropoulos et al., 1997). It has been
reported that multiplication of the gene was to be the cause of the disease (Singleton et al.,
2003). It has been suggested that aggregates of alpha-synuclein cause potentiation of oxidative
stress, possibly with interaction with iron.

Synuclein was considered to be degraded in the proteasome. Knockout of the 26S proteasome in
the dopaminergic neurons induced “pale bodies”, which is reported to be a prodrome of the Lewy
bodies (Bedford et al., 2008).

Parkin and UCHL-1 are considered essential for ubiquitination of the unfolded proteins, and the
gene mutations were found in some familial PD. It is considered that oxidative stress may lead a
combination of Parkin and DJ-1, and the combination suffocates unfolded protein degrad- ation
(Kitada et al., 1998; Bonifati et al., 2003). Mg has also been reported to inhibit spontaneous and
iron-induced aggregation of alpha-synuclein (Golts et al., 2002) (Figure 4).

Figure 4.

Scheme of possible pathomechanisms of dopaminergic
neuron death in Parkinson’s disease.

Low Mg and Parkinson’s disease model
In the course of investigations into the patho- genesis of the PDC, the present authors performed
an experiment in which rats were exposed to restricted intake of Ca and/or Mg over two
generations. This resulted in severe loss of dopaminergic neurons exclusively in the substantia
nigra in 1-year-old rats that had been subjected to continuously low Mg intake (one- fifth of the
normal level) over generations (Oyanagi et al., 2006). This finding suggested a deep concern of
low Mg intake over several generations to the pathogenesis of degeneration of the substantia
nigra in humans.

Therapeutic possibility by Mg for Parkinson’s disease

As a blocker of the glutamatergic NMDA receptor

Mg controls cytochrome c release in mito- chondria (Eskes et al., 1998), and decreases the
activity of N-methyl-D-aspartate (NMDA) receptors in excitotoxicity (Mayer et al., 1984). Mg
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treatment has also been shown to decrease cerebral infarct volume in rats in vivo (Lyden et al.,
2000). The mechanism responsible for the neuroprotective effect of Mg has been considered to
be reduced presynaptic release of the neurotrans-mitter glutamate (Lin et al., 2002), and
blockade of the glutamatergic NMDA receptor (Nowak et al., 1984)(Figure 5). A relationship
between decreased Mg concentration in serum and migraine has been reported in humans, and it
has been suggested that migraine might be caused by hypersensitivity of the NMDA receptor to
glutamic acid and certain other neuro-excitatory amino acids due to Mg depletion (Cojocaru et
al., 2006). A decrease of cytosolic free Mg in the occipital lobe of PD patients has also been
demonstrated by phosphorus magnetic response spectroscopy (Barbiroli et al., 1999).

Figure 5.

Metallic elements and neuron conduction.

As an inhibiter of oxidative stress

The present authors conducted a study to clarify the effects of Mg administration in a rat PD
model involving culture of ventral mesencephalic- striatal cells with 1-methyl-4-
phenylpyridinium (MPP ), based on recent evidence for significant loss of dopaminergic neurons
exclusively in the substantia nigra of 1-year-old rats after exposure to low Mg intake over
generations (Oyanagi et al., 2006) (Figure 6). The results indicated that Mg might protect
dopaminergic neurons in the substantia nigra from degeneration. The concentration of Mg in the
culture medium varied from 0.8 mM, corresponding to the control condition, to 4.0 mM. Effects
were estimated by counting the number of surviving dopaminergic neurons immunopositive for
tyrosine hydroxylase and measuring the length of dopaminergic neurites. An increase in the
concentration of Mg to 1.2 mM significantly inhibited the toxicity of MPP , and a concentration
of 4.0 mM completely prevented any decrease in the number of dopaminergic neurons. The
length of dopam- inergic neurites was significantly preserved in the presence of Mg at 1.2 and
4.0 mM. An increase in the concentration of Mg to 1.2 and 4.0 mM led to a significant
amelioration in the length of dopam- inergic neurites after MPP  toxicity (Figure 7).

Figure 6.

Severe atrophy and selective loss of dopaminergic neurons in
the substantia nigra in rats with low Mg over generations
(Oyanagi K, et al., 2006).

Figure 7.

Prevention of MPP  toxicity by Mg in a Parkinson model
(Hashimoto et al., 2008). a: normal condition of cultured
nigral dopaminergic neurons. b: severe loss of dopaminergic
neurons and the neuritis after MPP  administration. c: An
increase in the concentration (more...)
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This was the first report to document a significant and striking effect of Mg for prevention of
neurite and neuron pathology, and also amelioration of neurite pathology in a PD model. In
addition, an increase in the Mg concentration to 1.2, 2.0, and 4.0 mM did not induce any
degenerative features in the cultured dopaminergic cells, suggesting that a Mg concentration of
up to 4.0 mM in the extracellular space might not induce any neuron degeneration in humans.
Mg oxide per os has often been used as a laxative for patients with PD, but is reportedly not
absorbed in the bowels, thus not affecting the serum concentration of Mg (Sakimura et al., 1998).
Recent studies by the authors using mice also established that no significant alteration was found
in the CSF of B6 mice injected intraperitoneally with Mg, even though the serum Mg
concentration was significantly increased (Sun et al., 2009). Further research is necessary to find
Mg compounds that can easily be absorbed in the bowels and pass through the blood-brain
barrier, like Mg-L- threonate (Slutsky et al., 2010) and besides, via transporters that can carry
Mg through the bowel mucosa, blood-brain barrier and plasma membrane of neurons.
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