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Abstract: Lately, studies have shown that patients with Parkinson’s disease (PD) report a strong
craving for sweets and consume significantly more fast-acting carbohydrates than healthy controls.
Consuming food with a high-sugar content is assumed to lead to an increase in insulin concentration,
which could positively influence dopamine concentration in the brain and unconsciously be used by
patients as kind of “self-medication” to compensate for a lack of dopamine in PD. On the other hand,
high-sugar intake could also lead to insulin resistance and diabetes, which is discussed as a causative
factor for progressive neurodegeneration in PD. In this critical appraisal, we discuss the role of sugar
intake and insulin on dopamine metabolism in patients with PD and how this could influence the
potential neurodegeneration mediated by insulin resistance.
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1. Introduction

Many patients with Parkinson’s disease (PD) report a change in eating behavior with
an excessive craving for sweets [1,2], sometimes already occurring before the manifestation
of the cardinal motor symptoms. Lately, some studies confirmed that patients with PD
prefer eating sweet foods [1,3], including chocolate [4], cakes [5] and ice cream [6]. Pre-
ferring sweet foods seems to reflect a craving or a need for fast-acting sugar more than a
need for certain tastes or ingredients [7]. In fact, patients with PD consume significantly
more (fast-acting) carbohydrates compared to healthy controls [1,2,8]. More precisely, they
have a higher consumption of free sugar. Interestingly, a higher consumption of sugar in
PD is not necessarily accompanied by an increase in weight, even in the early phases of
the disease, in which increases in muscle tone, tremor or dyskinesia do not reach a degree
that requires higher energy consumption [8]. In fact, many patients even lose weight [9,10].
Some studies indicate that although patients consume more fast-acting carbohydrates,
there are no differences in total energy intake [1,2]. However, the reason for this change in
preference has not yet been explained. Especially for patients, the effect of this change in
eating habits on disease progression remains unclear. It has been suggested that a higher
intake of sugar might increase dopamine (DA) concentration in the brain. Hence, increased
sugar consumption in patients with PD can be seen as a form of “self-treatment” [3,11].
On the other hand, it has been shown that a high intake of fast-acting carbohydrates also
affects insulin metabolism, which has lately been discussed as a factor that potentially
influences progressive neurodegeneration in PD [12,13]. Therefore, it remains unclear
whether increased sugar intake in PD results in benefits for the patient or, in contrast, might
be a culprit triggering the progression of neurodegeneration. Taken together, the frequently
observed intake of increased amounts of free sugar in patients with PD might influence
pathophysiology, and thus may also hold therapeutic options.
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In this critical appraisal, we give an overview of the potential mechanisms leading to
increased sugar intake in patients with PD and discuss the role of insulin on DA metabolism
and neurodegeneration, potentially mediated by central and peripheral insulin resistance.

2. Methods

To find suitable information, a search in Medline was conducted. Articles includ-
ing animal and human studies, reviews and comments were identified using the terms
“Parkinson’s disease” and “insulin” or “diabetes” or “diabetes mellitus” or “metformin”
or “glitazones” or “glucagon-like peptide-1 receptor agonists” or “dipeptidyl peptidase
4 inhibitors” or “insulin resistance” or “sugar” or “carbohydrates” or “dopamine”. Suitable
articles were also detected in the citation lists of the papers identified by the literature
search. Only articles published in English up until November 2021 were evaluated in this
critical appraisal.

3. Sugar Intake, Dopamine and Insulin in Parkinson’s Disease
3.1. Effects of Sugar Intake on Dopamine Concentrations in the Brain via Insulin

Primarily, the intake of sugar leads to an increase in blood glucose, which triggers
insulin release in the pancreatic ß-cells (reviewed by [14]). Insulin then acts via periph-
eral and central insulin receptors (reviewed by [15]). In rat brains, insulin receptors are
highly represented in the substantia nigra [16–18]. The application of intravenous glu-
cose has been shown to lead to a transient increase in DA release in rodent substantia
nigra cells [19] via several mechanisms. Thus, insulin leads to a higher firing frequency
of dopaminergic neurons [20]. Additionally, insulin seems to increase the excitability of
striatal cholinergic interneurons via insulin receptors, leading to an increase in striatal DA
release [21]. Moreover, insulin delays the degradation of DA by reducing the expression
of monoamine-oxidase (MAO). Finally, it increases DA uptake by increasing dopamine
reuptake transporters (DAT) expression [22,23].

When examining post-mortem brain tissue from patients with PD, a loss of insulin
receptor immunoreactivity as well as tyrosine hydroxylase protein was observed, which
potentially indicates limited DA production via this pathway [24–26]. However, there are
no further human post-mortem studies examining these possible coherences.

Following the evidence from animal models, it can be hypothesized that patients with
PD unconsciously consume higher amounts of sugar to increase brain DA concentration
through an insulin peak as a kind of “self-medication” to counteract the disease-related low
DA concentration and consecutive symptoms [3,11]. However, it remains unclear whether
an insulin peak really increases DA concentrations and thereby decreases symptoms in
patients with PD as there are only few studies concerning this issue. One study showed an
improvement in motor symptoms one hour after chocolate intake [7], while another study
showed an association of higher sugar consumption with increased non-motor symptom
burden including depression, dementia and REM behavior sleep disorder (RBD), as well
as poorer quality of life in patients with PD [1]. One may argue that patients with a
more severe progression of the disease, and thus more overall symptoms may crave more
fast-acting sugar [1]. Conversely, higher sugar intake could lead to a more rapid disease
progression. However, other studies could not confirm this association of symptom severity
and increase in sugar intake [3,7]. Due to differences in study populations regarding disease
duration and study design (retrospective [3] and prospective [1] observational studies,
one interventional study [7]), further investigations are needed.

3.2. Potential Interactions between Insulin Metabolism and Neurodegeneration in PD

Although the short-term effects of high intake of sugar and increased insulin con-
centration in patients with PD have not been determined yet, it is essential to consider
long-term effects of increased sugar consumption, as there are indices that this eating
habit may be disadvantageous for patients with PD. Over time, carbohydrates with a high
glycemic index are associated with inflammation, insulin resistance and diabetes [27–29],
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which are discussed as potential factors contributing to progressive neurodegeneration in
PD [30]. Aside from glucose, fructose, which is often contained in the sweeteners used in
processed food, has a massive impact on insulin resistance (reviewed by [31]) and needs to
be studied in this respect.

In fact, several studies indicate that patients with diabetes mellitus, including type 1
and 2, have a higher risk of developing PD [32–36]. This risk increases with a disease dura-
tion of diabetes of more than five years [37,38]. In one study, the risk of developing PD was
more pronounced in women with diabetes [39]. However, results are inconsistent as other
studies could not show a higher risk of developing PD in patients with diabetes [40–43].
This can be explained in part by different study designs.

Besides these indications for an increased risk of PD in patients with diabetes, there is
evidence indicating a common genetic predisposition for diabetes and PD in at least one
subgroup of patients with shared genetic pathways, evidenced by several common genetic
loci. One major shared pathway relates to a role in immune function, which is demonstrated
by the fact that several changes occur in genes coding for the human leucocyte antigen
(HLA) system. Another pathway relates to common changes in the microtubule-associated
protein tau (MAPT) [44]. Additionally, patients with PD and patients with type 1 and
2 diabetes share abnormal concentrations of some microRNAs that are important for
epigenetic modification (reviewed by [45]).

Finally, some studies found greater symptom severity in patients with PD and dia-
betes, in particular regarding postural instability, gait difficulties and a generally faster
progression of motor symptoms [44,46]. While posture- and gait-related symptoms could
also be caused by other diabetes-associated disorders—e.g., polyneuropathy caused by
diabetes—a faster overall progression may indicate a more direct effect of insulin dysregu-
lation on PD. The observation that patients with PD and dementia suffer more from insulin
resistance compared to patients with PD without dementia is important in this respect [47].
Consistent with studies in the general population, there is evidence that patients with PD
and diabetes experience greater cognitive decline and worse cognitive function [46,48]. So
far, underlying mechanisms remain unclear. In this paper, the negative effects of diabetes
on intracerebral small vessels and associated changes in metabolism are discussed, among
other factors.

3.3. Insulin Pathways in the Brain

Cell studies and animal models provide evidence that insulin binds to insulin re-
ceptors in the brain, which, by phosphorylating substrates of the insulin receptor, acti-
vates two pathways associated with neuronal health: (I) the PI3K/AKT pathway, which
is demonstrated to play a role in neuronal survival, reduce oxidative stress and reactive
oxygen species, as well as contributing to the reduced aggregation of alpha-synuclein and
(II) the MAPK pathway, fostering cell growth (reviewed by [49,50]). Supporting this, some
studies showed that the inactivation of insulin receptors could lead to more proinflamma-
tory cytokines, increased oxidative stress, as well as the aggregation of alpha-synuclein in
PD rodent models [12,51], potentially contributing to progressive neuronal degeneration.
Importantly, in rodents, the inactivation of insulin receptors can be caused by insulin
resistance [12,52]. Consequently, the high intake of free sugar, including fructose, could
contribute to insulin resistance and DA depletion in patients with PD.

On the other hand, in a PD rodent model, a depletion of dopaminergic neurons was
also found to alter insulin signaling and was associated with increased markers of insulin
resistance, which could lead to a vicious cycle with progressive insulin resistance and a
loss of dopaminergic neurons [53].

3.4. Effects of Diabetes Medication on Risk of Developing PD

As there is only little direct evidence regarding the consequences of high-sugar intake
and insulin resistance in patients with PD, studies investigating the effect of antidiabetic
drugs, which improve insulin resistance and thereby glucose metabolism, are worth con-
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sidering. The prevalence of PD seems to vary among patients diagnosed with diabetes
depending on their diabetes medication. In a retrospective cohort study with more than
100,000 patients with diabetes, individuals treated with dipeptidyl peptidase 4 (DPP4)
inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists alone or in combination
had a significantly lower risk of developing PD compared to patients with diabetes treated
with other antidiabetics than DPP4 inhibitors, GLP-1 agonists or glitazones [54]. One other
study also showed a significant reduction in PD incidence after use of DPP-4 inhibitors [55].
Moreover, treatment with insulin was also associated with a decreased risk of PD but to a
smaller degree compared to DPP4 or GLP-1 agonist treatments [54]. Additionally, a meta-
analysis showed a significant reduction in PD incidence in patients with diabetes treated
with glitazones [56]. Conversely, three studies found no reduction in PD incidence when
treated with glitazones [54,57,58]. Regarding the association of metformin and sulfonylurea
with PD prevalence, treatment with sulfonylurea alone seemed to increase the risk of PD in
patients with diabetes, while adding metformin seemed to lead to a decreased risk [59].

3.5. Effects of Diabetes Medication on Disease Progression in PD

As summarized in Table 1, many studies that investigated the effects of antidiabetics
on the progression of PD used PD animal models. Rodent models are most commonly
used. From these studies, causal relations explaining the associations observed in hu-
mans can be derived. Several of these studies showed the neuroprotective properties of
dopaminergic neurons, less alpha-synuclein aggregation, better mitochondrial function,
and anti-inflammatory as well as antioxidant effects after different antidiabetic treatments.
However, only a few studies investigated antidiabetic drugs in patients with PD, with so
far inconclusive results. As an example, the use of glitazones had a positive influence on
disease progression in PD animal models [60,61], which could not be shown in patients
with PD [62].

Table 1. Effects of antidiabetics on PD.

Animal/Cell Model Human
Drug Positive Effects No/Negative Effects Positive Effects No/Negative Effects

Intranasal
insulin

Improvement of motor function [63,64]
Improvement of mitochondrial

function [63,64]
Improvement of cognitive function [65]

Increased neuroprotection (animal
model [66]; cell model [67])

Improvement of motor
function [68]

Improvement of cognitive
function [68]

Metformin

Improvement of motor
function [60,69–72]

Improvement of mitochondrial
function [69–73],

Increased
neuroprotection [60,61,74–76]

Decreased alpha-synuclein
aggregation [61,77,78]

Improvement of
neuronal inflammation

Increased anti-oxidant effect [71,79,80]

Increased
neurodegeneration [81]

DPP-4
inhibitors

Improvement of motor function [82]
Increased neuroprotection [82]

Increase in cerebral dopamine
transporter [83]

Slower increase in L-dopa
dose [83]

Less L-dopa-induced
dyskinesia [83]
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Table 1. Cont.

Animal/Cell Model Human
Drug Positive Effects No/Negative Effects Positive Effects No/Negative Effects

GLP-1
agonists

Improvement of motor function [84–89]
Improvement of neuronal
inflammation [84,88,90]

Increased neuroprotection [84,86,88–93]
Increased anti-oxidant effect [90]

Decreased alpha-synuclein
aggregation [88]

Improvement mitochondrial
function [88,93]

Improvement of cognitive
function [94,95]

Improvement of motor
function [94–96]

GLP-1 and GIP
agonists

Improvement of motor function [97–102]
Increased neuroprotection [97–105]

Improvement of neuronal
inflammation [97–99,104]

Improvement of mitochondrial
function [97]

Glitazones

Reduction in glial activation [106–111]
Increased

neuroprotection [106,107,109–119]
Increased anti-oxidant effect [112,120]

Improvement of motor
function [110,113,121,122]
Improvement of neuronal

inflammation [108,116,118,120,121]
Improvement of cognitive function [122]

Anti-depressant effect [109]
Reduction in mortality [109]

Reduction in
striatal dopamine
through chronic
treatment [115]

No effect [62]

SGLT-2
inhibitor

Improvement of motor function [123]
Decreased alpha-synuclein

aggregation [123]
Increased dopamine concentration [123]

Reduction in oxidative stress [123]
Improvement of neuronal

inflammation [123]

DPP-4 inhibitors, dipeptidyl peptidase 4 inhibitors, GLP-1 agonists, glicagon-like-peptide-1 agonists, GIP agonists,
glucose-dependent insulinotropic polypeptide receptor agonists, SGLT-2 inhibitor, sodium-glucose transport
protein 2 inhibitor.

With regard to symptoms, several studies showed improved motor and cognitive
functions in animal models using different antidiabetic drugs. In patients with PD and
multiple system atrophy (MSA), an improvement of motor and cognitive function was
found after application of intranasal insulin or GLP1-agonists [68,94–96]. Additionally,
patients taking GLP-1 agonists showed increased dopamine transporter density and had a
slower increase in L-Dopa use and less L-Dopa-induced dyskinesia [83].

Taken together, several antidiabetic drugs might be associated with slower symptom
progression in PD, and thus may have a neuroprotective, disease-modifying, or at least
symptomatic effect in PD, with randomized controlled studies still absent. However, this is
only indirect evidence and does not replace the need for high-quality studies investigating
the short- and long-term effects of sugar intake and insulin resistance in patients with PD.

4. Brain Reward Circuit—Dopamine, Insulin and Depression

Dopamine is also known for its important role in the brain reward system (reviewed
by [124]), which is closely linked to depression. In patients with PD, depression is a frequent
non-motor symptom and seems to be associated with the abnormal neurotransmitter release
of DA and serotonin (reviewed by [125]). Remarkably, evidence showed that patients with
PD and depression consume more fast-acting carbohydrates than patients with PD and
without depression [1], which might indicate a higher demand of DA in the brain reward
system. This is supported by the observation that healthy individuals with genetically
reduced amounts of DA receptors and thereby a higher demand of DA, similar to reduced
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DA concentrations in patients with PD, seem to develop a “reward deficiency syndrome”
and use excessive carbohydrate intake as one form of “self-medication” to balance the lack
of DA [126–129].

5. Limitations and Future Directions

Taken together, there is some evidence from animal and cell studies that elevated in-
sulin concentrations can lead to an increased release of DA in the brain following fast-acting
carbohydrate intake. It can therefore be hypothesized that patients with PD unconsciously
improve motor and potentially even non-motor symptoms by consuming high-sugar-
content food (see Figure 1). However, sufficient evidence from clinical studies is still
missing to confirm this assumption. On the other hand, increased insulin concentrations,
following a high intake of fast-acting carbohydrates over a prolonged time, can lead to
insulin resistance and diabetes, which may contribute to neuronal degeneration. Again,
high-quality studies in patients with PD are still absent, especially as some of the available
studies show inconclusive results. Taken together, previous studies investigating the rela-
tion between DA and insulin metabolism could not clarify whether an increased intake of
high-sugar foods in PD might have the potential to improve clinical symptoms or, on the
contrary, contributes to neurodegenerative processes.
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Additionally, altered concentrations of insulin and insulin-growth factor (IGF) in the
cerebrospinal fluid (CSF) and serum could be of interest regarding the pathophysiology of
the neurodegenerative process in patients with PD. However, there are only a few studies
investigating this topic. While one study could not show any differences between the
insulin concentrations in the CSF of patients with PD and healthy controls [130], another
study showed higher IGF-1 concentrations in the blood and CSF of patients with PD
compared to the healthy individuals [131]. Moreover, one further study detected higher
IGF-1 serum concentrations in patients with PD compared to healthy controls, which did
not reach statistical significance [132]. Interestingly, higher IGF serum concentrations seem
to be related to low concentrations of alpha-synuclein and tau in the CSF, which is assumed
to represent an increased burden of those proteins in the brain tissue. As there are only a
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few studies investigating the topic with inconclusive results, additional research would be
essential to see whether there are relevant changes in insulin and IGF-1 in the serum and
CSF and whether they are related to increased concentrations of alpha-synuclein and tau in
patients with PD brain tissue.

Interestingly, not every patient with PD reports an increased intake of fast-acting
carbohydrates, suggesting a possible subtype of PD that is especially prone to this eating
behavior. Further studies are necessary to clarify this subtype hypothesis. Longitudinally
designed studies examining changes in sugar intake during disease progression, associ-
ations with symptom severity, and the possible development of insulin resistance and
diabetes over time would be of high interest.

Overall, the studies discussed here have some limitations that weaken their results.
Firstly, most of the studies mentioned in this critical appraisal used cell or animal models,
which only offer limited transferability. Only a few studies were conducted in humans,
and these studies mostly used a retrospective design. Moreover, there is a lack of more
recent studies regarding insulin and DA. In fact, most studies concerning this topic are
from the 1990s or early 2000s. Furthermore, it should be mentioned that there are some
more aspects in patients with PD that are not fully understood yet and might contribute
to changes in eating behavior. Changes in their energy expenditure and hypothalamic
function, which might contribute to altered eating behavior, have been observed, among
others. Especially orexin and the melanin-concentrating hormone (MCH), which are
released in a homeostatic fashion, seem to be reduced in PD [133,134]. However, this seems
to be somewhat correlated with a loss of appetite [135,136] and does not explain the higher
intake of sugar. Additionally, changes in peripheral signals such as ghrelin and leptin
concentrations have been described. However, as ghrelin and leptin regulate contradictory
effects (ghrelin induces hunger, while leptin induces satiety), the relevance of these findings
remains unclear [137,138]. Finally, changes in eating behavior in patients with PD could be
a consequence of gastrointestinal non-motor symptoms, including dysphagia, constipation
and defecatory dysfunction [139], although it is unlikely that these symptoms directly affect
the intake of sugary foods.

6. Conclusions

In conclusion, evidence explaining the interaction of fast-acting carbohydrate intake,
insulin metabolism and DA in patients with PD remains limited, and further research
is needed to clarify the role of sugar intake as beneficial or harmful to patients with PD.
On the one hand, there is evidence suggesting that sugar intake could improve motor
and non-motor symptoms in patients with PD by increasing DA release in the short term,
on the other hand, it could also lead to progressive neurodegeneration in the long term.
Additionally, a high intake of fast-acting carbohydrates increases the risk for overweight
and diabetes mellitus, which impairs patients’ health. Taken together, at the moment, it
seems that the disadvantages of high-sugar intake predominate the benefits in the long
run. Therefore, in clinical practice, it is recommended that patients are informed about the
benefits of a healthy diet to positively influence the development and progression of PD
and prevent other diseases [140,141]. Especially diets with a low glycemic index, rich of
vitamins and polyphenols, a Mediterranean diet for example, can be recommended [142].
Moreover, patients with PD should be screened for diabetes on a regular basis, and nutrition
counselling should be provided. Future research should specifically address pathophysi-
ological mechanisms of fast-acting carbohydrates, and longitudinal observations should
include the assessment of markers of carbohydrate metabolism for a better understanding
of disease development, progression and, finally, the influence of therapeutic options.
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