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• A shift from animal to human trials in prodromal up to mild AD is a

prerequisite.

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia, accounting for more than

50 million patients worldwide. Current evidence suggests the exact mechanism behind this

devastating disease to be of multifactorial origin, which seriously complicates the quest for

an effective disease-modifying therapy, as well as impedes the search for strategic

preventative measures. Of interest, preclinical studies point to serotonergic alterations,

either induced via selective serotonin reuptake inhibitors or serotonin receptor

(ant)agonists, in mitigating AD brain neuropathology next to its clinical symptoms, the

latter being supported by a handful of human intervention trials. Additionally, a substantial

amount of preclinical trials highlight the potential of diet, fecal microbiota transplantations,

as well as pre- and probiotics in modulating the brain’s serotonergic neurotransmitter

system, starting from the gut. Whether such interventions could truly prevent, reverse or

slow down AD progression likewise, should be initially tested in preclinical studies with AD

mouse models, including sufficient analytical measurements both in gut and brain.

Thereafter, its potential therapeutic effect could be confirmed in rigorously randomized

controlled trials in humans, preferentially across the Alzheimer’s continuum, but especially

from the prodromal up to the mild stages, where both high adherence to such therapies, as

well as sufficient room for noticeable enhancement are feasible still. In the end, such studies

might aid in the development of a comprehensive approach to tackle this complex

multifactorial disease, since serotonin and its derivatives across the microbiota-gut-brain

axis might serve as possible biomarkers of disease progression, next to forming a valuable

target in AD drug development. In this narrative review, the available evidence concerning

the orchestrating role of serotonin within the microbiota-gut-brain axis in the development

of AD is summarized and discussed, and general considerations for future studies are

highlighted.
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1. Introduction

1.1. About Alzheimer’s disease

Dementia roughly affects 50 million people worldwide, and numbers are expected close to

double every 20 years (Prince et al., 2015). Dementia is a broader term for the decline in

cognitive function, including memory, learning and thinking, in a more drastic manner than

is expected from normal aging (WHO, 2020). This can be caused by a range of conditions,

yet, the most common one is Alzheimer’s disease (AD) which accounts for 60–70% of all

cases as stated by the WHO. Although AD is considered a disease of the elderly,

Zhu et al. (2015) estimated that early-onset AD (< 65 years) accounts for 6% of cases.

Regardless of the age of onset, the course of the disease extends over a period of about 15–

25 years as a continuum (Scheltens et al., 2021). At onset of the pathology, the patient may

be asymptomatic or experience mild cognitive impairment (MCI). Over time, however,

symptoms gradually become worse in function of the progressive neuronal loss (

Duyckaerts et al., 2009; Förstl and Kurz, 1999). During all disease stages, a change in mood

and behavior is often experienced (Lyketsos et al., 2002). These common neuropsychiatric

symptoms include anxiety, depression, irritability, reduced appetite, stereotyped behavior,

psychosis and aggression (Craig et al., 2005). Given the cognitive and behavioral alterations,

the dementia syndrome forms a burden both on the individual suffering from the disease, as

well as on family, caregivers, friends in addition to the entire society. As an indication, the

global socioeconomic costs for dementia were calculated to be about 670 billion euros in

2015 (Prince et al., 2015).

Although many gene polymorphisms have been linked to AD, genetics give a far from

complete explanation, with an exception for the rare familial (often early-onset) forms of

AD (Gatz et al., 2006, Vogrinc et al., 2021). Nevertheless, related genes may give an

indication of the possible pathophysiological mechanisms, such as with the apolipoprotein-

E (APOE) determined allelic risk variation (Scheltens et al., 2021). The general picture of AD

consists of the progressive topographic decline in cholinergic, catecholaminergic

(dopamine, (nor)adrenalin) and indoleaminergic (serotonergic) neuronal functioning and

loss (for review: Šimić et al., 2017), preceded by neurotoxic amyloid-beta (Aβ) plaque

aggregation extraneuronally, and, intraneuronally deposited neurofibrillary tangles (NFT) of

phosphorylated tau (P-tau), both being histological hallmarks of AD (Braak and Braak, 1991).

https://www.sciencedirect.com/topics/neuroscience/mild-cognitive-impairment
https://www.sciencedirect.com/topics/neuroscience/behavior-neuroscience
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gene-polymorphism
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/cholinergic-receptor-stimulating-agent
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/catecholaminergic
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/neurofibrillary-tangle


Other factors are suspected to be equally involved, such as a blood-brain barrier disintegrity,

oxidative stress and mitochondrial dysfunction (Vidal and Zhang, 2021). Another etiological

factor is the glycosylation of lipids and proteins, giving rise to advanced glycation end

products (Haukedal and Freude, 2021). Furthermore, a substantial amount of evidence

suggests that neuroinflammation plays a contributing role in AD development by

accelerating the abovementioned processes (Kinney et al., 2018). Especially microglia seem

to be involved (Hansen et al., 2017). Finally, the microbiota-gut-brain axis may be involved

in the development of AD as well (Bonfili et al., 2021, Doifode et al., 2021I,

Generoso et al., 2020, Kesika et al., 2021). All in all, these suspected disease modulators are

current targets in the ongoing search for an effective cure (Cummings et al., 2021). At the

same time, Livingston et al. (2020) identified 12 potentially modifiable risk factors across

the lifespan, accounting for around 40% of worldwide dementias, aiding the development of

public health prevention strategies. Of these risk factors, lifestyle in general plays a

prominent role.

1.2. Serotonergic neurotransmitter system alterations in Alzheimer’s
disease: gut involvement

Prominent changes in AD brain expand far beyond Aβ and tau, with a disturbed serotonergic

neurotransmitter system as one of the most prominent neurochemical alterations, which is

involved in but not restricted to emotional and cognitive dysfunction (Ciranna, 2006).

Firstly, a decrease in total brain serotonin content, particularly in the temporal and frontal

cortex, has earlier been identified (Aral et al., 1984, Palmer et al., 1987), next to alterations

of cerebrospinal fluid (CSF) serotonin levels (Tohgi et al., 1992). Secondly, Cross et al. (1984)

found a substantial loss of serotonin (5-hydroxytryptamine, 5-HT) type 1 and 2 receptors in

the amygdala, neocortex and hippocampus in post-mortem brains of Alzheimer’s patients,

and, more recently, Solas et al. (2021) examined involvement of 5-HT7 receptors in

psychotic symptoms in AD. A correlation has also been observed between aggressive as well

as depressive symptoms and serotonin levels (and its metabolite 5-hydroxyindoleacetic acid

(5-HIAA)) in specific brain areas, among which the hippocampus (Vermeiren et al., 2014).

Multiple studies also revealed that selective serotonin reuptake inhibitors (SSRI), which act

on the serotonin transporter (SERT) (Fig. 1), relief both behavioral and cognitive phenomena

in AD patients, among which aggression and anxiety (Rodríguez et al., 2012). Additionally,

CSF Aβ-concentrations were shown to be associated with SSRI treatment (Cirrito et al., 2011,

Sheline et al., 2014) and the long-term use of antidepressants, such as SSRI, seems to lower

the elevated risk on developing dementia in depressed individuals (Kessing et al., 2009).

These findings hypothesize (in)direct involvement of serotonergic system alterations and
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AD development, making it a valuable target both in terms of prevention and (symptomatic)

treatment.
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Fig. 1. Serotonin and kynurenine biosynthetic and metabolic pathways starting from

tryptophan. The essential amino acid tryptophan forms the basis for the synthesis of

serotonin (5-HT). Its deductive metabolic pathway consists of the kynurenine pathway.

Serotonergic brain circuitry all start from the raphe nuclei, a collection of serotonin-

producing neurons, located in the brainstem at the height of the pons, and have efferents

connecting with the entire neocortex, limbic system (of which amygdala and hippocampus),

diencephalon, cerebellum and peripheral/autonomous nervous system (e.g. spinal cord,

vagus nerve). The mechanism of action of an SSRI is to block SERT, thus preventing the

reuptake of serotonin after its release from the synaptic cleft back into the presynaptic

neuron. The kynurenine pathway elicits the formation of both neurotoxic and

neuroprotective metabolites. Kynurenic acid is mainly formed in astrocytes (purplish) and is

an effective NMDA receptor antagonist, preventing abundant intracellular release of

calcium, and, consequently, excitoxicity. Contrariwise, 3-hydroxykynurenine is known as a

potent oxidative stressor and free radical donor, leading to mitochondrial damage and the

creation of reactive oxygen species. A similar neurotoxic function has been ascribed to
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quinolinic acid, an NMDA receptor agonist, with an opposite function compared to

kynurenic acid. Quinolinic acid is mainly formed in microglia (pinkish). Abbreviations: 3-

HAO: 3-hydroxyanthranilate 3,4-dioxygenase; 5-HIAA: 5-hydroxyindoleacetic acid; 5-HT: 5-

hydroxytryptamine (serotonin); AADC: aromatic l-amino acid decarboxylase; ACMSD: 2-

amino-3-carboxymuconate semialdehyde decarboxylase; ASMT: acetylserotonin O-

methyltransferase; Ca : calcium; IDO: indoleamine 2,3-dioxygenase; KAT: kynurenine

aminotransferase; KMO: kynurenine 3-monooxygenase; KYNU: kynureninase; MAO:

monoamine oxidase; NAD : nicotinamide adenine dinucleotide; NAT: N-acetyltransferase;

NMDA: N-methyl-d-aspartate; SERT: serotonin transporter; SSRI: selective serotonin

reuptake inhibitor; TDO: tryptophan 2,3-dioxygenase; TPH: tryptophan hydroxylase; QPRT:

quinolinate phosphoribosyltransferase. Created with BioRender.com.

On the whole, the total serotonin content in brain is far less than that in gut tissue (

Erspamer, 1966, Vermeiren et al., 2016, Vermeiren et al., 2015), and, even more less

compared to concentrations in the intestinal lumen. Fecal concentrations give an indication

of the latter (Hirabayashi et al., 2020). Total estimates range from 5% to 10% of its production

solely in the brain, compared to 90–95% in the gut. The essential aromatic amino acid

tryptophan (Bender, 1983, Udenfriend et al., 1956) is the main precursor of serotonin

synthesis. After dietary or supplemental ingestion, the amino acid can be converted through

a chain of reactions into several products of which serotonin, or, more specifically, 5-

hydroxytryptamine (5-HT), is one example. An intermediate in the formation of the

neurotransmitter is 5-hydroxytryptophan (5-HTP) (Udenfriend et al., 1956). Following its

synthesis, serotonin can in turn be converted into other metabolic products, such as 5-HIAA

via the action of monoamine oxidase (MAO) (Fig. 1). Nevertheless, tryptophan can also be

metabolized via the kynurenine pathway, which requires the enzyme indoleamine-2,3-

dioxygenase (IDO) (for review: Wichers and Maes, 2004). An essential enzyme required for

the synthesis of serotonin itself is tryptophan hydroxylase (TPH), which plays a role in the

rate-limiting step (Bender, 1983). Both neurons and enterochromaffin cells (ECC) of the gut

comprise this enzyme, although slightly different variants exist (Côté et al., 2003,

Walther et al., 2003I). TPH1 and TPH2 are the most abundant in gut and brain, respectively.

Beside EEC, several microorganisms in the gut are also able to produce hormones and

neurotransmitters, including serotonin (for review: Clarke et al., 2014). Escherichia coli k12

and Lactobacillus plantarum, for instance, are examples of bacteria that possess this ability,

at least in vitro.

1.3. Its potential importance in Alzheimer’s disease

In short, the brain, gut and microbiota all produce serotonin. However, serotonin itself,

unlike its intermediates, is hardly able to cross the blood-brain barrier, as evidenced in rats

2+

+

https://www.sciencedirect.com/topics/neuroscience/quinolinic-acid
https://www.sciencedirect.com/topics/neuroscience/nmda-receptor-agonists
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/microglia
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/carboxy-lyases
https://www.sciencedirect.com/topics/neuroscience/carboxy-lyases
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/carboxylyase
https://www.sciencedirect.com/topics/neuroscience/n-acetylserotonin
https://www.sciencedirect.com/topics/neuroscience/kynurenine-aminotransferase
https://www.sciencedirect.com/topics/neuroscience/kynurenine-aminotransferase
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/kynureninase
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/n-methyl-dextro-aspartic-acid
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/phosphoribosyltransferase
https://www.sciencedirect.com/topics/neuroscience/aromatic-amino-acid
https://www.sciencedirect.com/topics/neuroscience/tryptophan
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ingestion
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/amino-acids
https://www.sciencedirect.com/topics/neuroscience/neurotransmitter
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/monoamine-oxidase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tryptophan
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/kynurenine-pathway
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enzyme
https://www.sciencedirect.com/topics/neuroscience/tryptophan-hydroxylase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enterochromaffin-cell
https://www.sciencedirect.com/topics/neuroscience/tph1
https://www.sciencedirect.com/topics/neuroscience/tph2
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/escherichia-coli-k-12
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lactobacillus-plantarum
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/microflora


by the use of radiolabelling techniques (Oldendorf, 1971). This points out the existence of

distinct pools of serotonin, which, on the contrary, may be able to interact with one another

(Clarke et al., 2013). This notion is supported by the fact that gut and brain are

bidirectionally connected via metabolic, hormonal and neural routes as reviewed by

Wang and Wang (2016). Short-chain fatty acids (SCFA), metabolites produced by gut

microbiota following (mainly) dietary fiber intake, are considered important mediators in

this communication with an effect on cognitive function (Dalile et al., 2019). This might be

through the impact on gene expression, since SCFA stimulate the transcription of TPH1 (

Reigstad et al., 2015). As a logical consequence, interfering with the microbiota

(composition) in the gut, either by means of nutrition, fecal microbiota transplantations

(FMT) or a combination of pre- and probiotics, has become an emerging potential

modulator of brain health, and is likely to affect both distantly related serotonin pools (

Liu et al., 2015a).

As an indication of the importance of the indoleamine neurotransmitter serotonin within

the gut-brain axis, enrichment of diet with tryptophan has previously been evidenced to

enhance learning and memory abilities in aged rats (Musumeci et al., 2017) while

decreasing hippocampal apoptosis and intraneuronal Aβ load in transgenic AD mice (

Noristani et al., 2012). Musumeci et al. (2015) claim these effects to be the consequence of

changes in serotonin and brain-derived neurotrophic factor expression in both frontal cortex

and hippocampus. Additionally, FMT is able to modulate Aβ content in the hippocampus as

shown in a senescence accelerated mouse model (Cui et al., 2018).

1.4. Research question

In general, AD is a complex multifactorial disease of which the mechanisms remain

incompletely understood. There is mostly preclinical evidence that serotonin may play a

role in AD-related cognitive decline and neuropathological aspects, and that this might be

indirectly modulated through the microbiota-gut-brain axis, both in terms of development

and onset. In this narrative review, multiple relevant studies will be discussed aiming to

answer the question ‘what is the role of serotonin within the microbiota-gut-brain axis in

the development of AD?’. Since there are no studies to date yet that have tackled this issue

as a whole, the research question will be subdivided into two subquestions. First, ‘are the

alterations in the brain’s serotonergic system implicated in the development of AD?’,

followed by ‘is it possible to alter the brain’s serotonergic system through modulation of the

microbiota-gut-brain axis?’.

2. Methods
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In order to gather literature for this narrative review, two databases were searched. The

search was performed in PubMed and Scopus using a set of queries. For each subquestion,

specific queries were used. These were: SSRI AND alzheimer * AND (plaque * OR (amyloid

AND beta) OR tau OR tangle * OR learning OR memory OR cognit * OR atrophy OR

neurodegeneration), (“serotonin receptor” AND (agonist OR antagonist)) AND alzheimer * 

AND (plaque * OR (amyloid AND beta) OR tau OR tangle * OR learning OR memory OR cognit 

* OR atrophy OR neurodegeneration), (probiotic * OR prebiotic*) AND (serotonin OR

serotonergic) AND brain, (nutrition OR diet*) AND (microbiota OR microbiome) AND

(serotonin OR serotonergic) AND brain and ((fecal OR fecal) AND transplant*) AND

(serotonin OR serotonergic) AND brain. Occasionally, the techniques forward and backward

snowballing were used. Duplicate findings were excluded. The remaining acquired articles

were screened by looking at the title and abstract, after which relevant articles were read

more thoroughly. Both human and animal in vivo designs, as long as it were intervention

studies, were considered eligible for the purpose of this review. In general, review articles

were excluded. Exceptions were made for reviews that summarized trials otherwise

excluded in this review. For the first subquestion, preclinical randomized controlled trials

that included an AD mouse or rat model as well as human clinical trials from the last two

decades were found eligible, at least, if they specifically manipulated the brain’s

serotonergic system. Trials with subjects that had pre-existing mental disorders (such as

depression) were excluded. This was also the case for trials that focused on one specific

behavioral symptom (such as agitation or depression), instead of a variety of behavioral

symptoms, cognition and/or underlying pathology. For the second subquestion, studies

involving either healthy subjects or a(n) (induced) disease state related to AD pathology or

symptoms that looked at serotonin (related) enzymes, receptors, transporters or

concentrations in the brain were included, provided that the studies intervened through

prebiotics, probiotics, FMT or nutrition. Furthermore, articles written in another language

than English were not considered. Eventually, 67 articles were considered relevant for

inclusion in this review, as can be seen in the overview (Fig. 2).
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Fig. 2. Flowchart of the inclusion and exclusion process for the review. Created with

Lucidchart.com.

3. Results

3.1. Serotonergic alterations in Alzheimer’s mouse models and patients

Although a body of evidence supports the existence of serotonergic changes in AD, it does

not necessarily imply a causal relationship. Therefore, intervention studies that manipulate

serotonin synthesis, metabolization or transport and meanwhile assess its effect on AD

brain pathology or clinical symptomatology are required. One well-studied way to

manipulate brain serotonin concentrations is the administration SSRI, known for its

widespread use as antidepressants. Multiple studies report their effect on Aβ plaques in

mouse models of AD, as summarized in Table 1.

Table 1. Preclinical studies in AD mouse models investigating SSRI administration on Aβ

plaque and tau tangle load and/or related cognitive and/or behavioral functioning.

https://ars.els-cdn.com/content/image/1-s2.0-S1568163721003032-gr2_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S1568163721003032-gr2.jpg
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/symptomatology
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/serotonin-brain-level


Multiple-

armed

randomized

controlled

trial

APP/PS1

mice (1

month old)

Unclear,

likely

about

12–52

Paroxetine (15 

mg/kg/2 days)

in drinking

water

6

months

Open field

test, three

chamber

test,

elevated

plus maze

and forced

swimming

test

- Decreased A

plaques in

cortex and

percentage

large diamet

plaques

- No effect on 

tau

- Less memory

deficit

Multiple-

armed

randomized

controlled

trial

Male

APP/PS1

mice (8

months)

60 Fluoxetine (50 

mg/kg/day),

intraperitoneal

2

months

The open

field, Morris

water maze

and Y maze

test

- Decreased A

and Aβ42 an

levels and

plaques in H

- Promote

oligodendroc

maturation

- Prevent

oligodendroc

lineage cell

senescence

(HC)

- Less learning

and memory

deficits

Author,

year

Study

design

AD mouse

model

Total

sample

size SSRI Duration

Behavioral

tests

Overall outcom

effect

Ai et al.

(2020)

Chao et

al.

(2020)



Multiple-

armed

randomized

controlled

trial

APP/PS1

mice (6

months old)

13 Escitalopram

(2.5 and 5 

mg/kg/d),

intraperitoneal

1 month –
- Both dosages

decreased

hippocampa

Aβ40/42 plaq

burden

- 5 mg/kg/d

reduced plaq

formation; n

effect on pla

clearance

Multiple-

armed

randomized

controlled

trial

rTg4510

(tauP301L )

mice (4

months)

48 Trazodone (40 

mg/kg/day),

intraperitoneal

4

months

Novel object

recognition

test,

burrowing

- Reduced tau

burden in th

HC

- Reduced

hippocampa

neuronal los

- Prevention o

memory loss

Multiple-

armed

randomized

controlled

trial

APP/tau/PS1

mice (4

months)

36 Fluoxetine (10 

mg/kg/day),

intragastrical

4

months

Morris

Water maze,

spatial

learning

test, probe

trial

- Decreased A

and Aβ42 lev

in HC

- Improved

learning and

memory

Author,

year

Study

design

AD mouse

model

Total

sample

size SSRI Duration

Behavioral

tests

Overall outcom

effect

Cirrito

et al.

(2020)

Hallida

y et al.

(2017)

+

Huang

et al.

(2018)



Multiple-

armed

randomized

controlled

trial

APP/PS1/

TauP301L

mice (6

months old)

Unclear,

likely

about

32

Fluoxetine (20 

mg/kg/day),

intraperitoneal

15 days Morris

water maze,

fear

conditioning

trial,

- Decreased A

levels in HC

- Increased

neuron num

and dendriti

spine density

DG and HC

(CA1)

- Enhanced

neuronal

plasticity (lo

term

potentiation

- No effect on

tau; improve

learning and

spatial mem

Multiple-

armed

randomized

controlled

trial

Male

APP/PS1

mice (16–17

months)

20 Fluoxetine (10 

mg/kg/day),

intraperitoneal

5 weeks Morris

water maze
- Reduced Aβ

plaques in H

- Prevented

neuronal los

DG, but not

CA1/CA3 of H

- Improved

spatial learn

Author,

year

Study

design

AD mouse

model

Total

sample

size SSRI Duration

Behavioral

tests

Overall outcom

effect

Jin et

al.

(2017)

Ma et

al.

(2017)



Multiple-

armed

randomized

controlled

trial

Male

APP/PS1

mice (9

months)

Unclear,

likely

68

Paroxetine (5–

30 mg/kg/day)

in drinking

water

9

months

Open field

test,

elevated

plus maze,

social

interaction

test

- No effect on

plaque load i

the neocorte

- Improved

activity,

exploration,

and less anx

Multiple-

armed

randomized

controlled

trial

Male

APP/PS1

mice (9

months)

52 Paroxetine (5–

30 mg/kg/day)

in drinking

water

9

months

Y maze test
- Reduced

plaques in th

HC

- No effect on

spatial work

memory

Multiple-

armed

randomized

controlled

trial

APP/PS1

mice (2

months)

Unclear Fluoxetine (5 

mg/kg/day) in

drinking water

4

months

Y maze test,

water maze

test

- Reduced

plaques and

soluble Aβ40

and Aβ42

- Improved

spatial mem

Multiple-

armed

randomized

controlled

trial

APP mice

(12 months)

40 Citalopram

(60 

mg/kg/week),

intraperitoneal

2

months

Morris

water maze,

rotarod

- Reduced Aβ4

(but not Aβ4

in whole bra

- Less synaptic

damage,

mitochondri

Author,

year

Study

design

AD mouse

model

Total

sample

size SSRI Duration

Behavioral

tests

Overall outcom

effect

Olesen

et al.

(2016)

Olesen

et al.

(2017)

Qiao et

al.

(2016)

Reddy

et al.

(2021)



deficits and

autophagy

- Improved

cognitive

function

Multiple-

armed

randomized

controlled

trial

Male

APP/PS1

mice (9

months)

147 Paroxetine (5–

10 mg/kg/day)

in drinking

water

3–9

months

Elevated

plus maze,

open field

test, social

interaction

test

- Reduced

survival

- No effect on 

plaques in

neocortex

- No effect on

memory or

behavior, exc

for locomoti

Multiple-

armed

randomized

controlled

trial

Male Aβ1–

42

oligomers

injected

C57BL/6

mice (2

months)

Unclear,

5–14

per

group

Fluoxetine (10 

mg/kg/day)

and

vortioxetine (5

and 10 

mg/kg/day),

intraperitoneal

21–26

days

Forced

swim test,

passive

avoidance

test, object

recognition

test

- Both SSRI

rescued Aβ-

induced

memory loss

and depressi

like behavior

Randomized

controlled

trial

APP/PS1

mice (3

month)

20 Escitalopram

(5 mg/kg/day),

oral drops

6

months

–
- Treatment d

not significa

reduce Aβ (n

in HC nor

neocortex)

Author,

year

Study

design

AD mouse

model

Total

sample

size SSRI Duration

Behavioral

tests

Overall outcom

effect

Severin

o et al.

(2018)

Torrisi

et al.

(2019)

Von

Linsto

w et al.

(2017)



Multiple-

armed

randomized

controlled

trial

Male

APP/PS1

mice (6

months)

Likely

about

40

Citalopram

(10 

mg/kg/day),

intraperitoneal

28 days New object

recognition

task, three

chamber

social test,

odor

recognition

test, nest

building

task, marble

burying test,

TST, sucrose

preference

test

- Reduced Aβ

plaques in

cortex and H

- Inhibited

microgliosis 

HC and

somatosenso

cortex

- Improved

short-term

memory and

depression-l

behavior

Abbreviations: Aβ: amyloid-beta; AD: Alzheimer’s disease; APP: amyloid-precursor protein; DG: dentate

gyrus; HC: hippocampus; PS1: presenilin 1; P-tau: phosphorylated tau; SSRI: selective serotonin reuptake

inhibitors; TST: tail suspension test.

Different types of SSRI, including fluoxetine (Chao et al., 2020, Huang et al., 2018,

Jin et al., 2017, Ma et al., 2017, Qiao et al., 2016), escitalopram (Cirrito et al., 2020),

citalopram (Reddy et al., 2021, Sheline et al., 2014, Zhang et al., 2018) and paroxetine (

Ai et al., 2020, Olesen et al., 2017), induce a decrease in Aβ levels and/or plaques in either

the whole brain, cortex or hippocampus, of which the latter region is the most studied one.

The effect might be region specific, since Olesen et al. (2016), Severino et al. (2018) and

Von Linstow et al. (2017) failed to replicate the effect for the neocortex. Another

neuropathological hallmark within the AD brain, P-tau depositions, has been studied by

Ai et al. (2020) and Jin et al. (2017). However, no significant effect was found of paroxetine

and fluoxetine in their used AD mouse models. On the other hand, the findings of

Halliday et al. (2017) did reveal improvement in tau burden in Tau P301L positive mice after

administering trazodone. A preventive effect on neuronal loss has been repeatedly observed

Author,

year

Study

design

AD mouse

model

Total

sample

size SSRI Duration

Behavioral

tests

Overall outcom

effect

Zhang

et al.

(2018)

https://www.sciencedirect.com/topics/neuroscience/dentate-gyrus
https://www.sciencedirect.com/topics/neuroscience/dentate-gyrus
https://www.sciencedirect.com/topics/neuroscience/presenilin-1
https://www.sciencedirect.com/topics/neuroscience/tail-suspension-test
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fluoxetine
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/escitalopram
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https://www.sciencedirect.com/topics/neuroscience/hippocampus
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as well in either the hippocampus (Halliday et al., 2017) or nearby regions, such as the

dentate gyrus (Jin et al., 2017, Ma et al., 2017). Other AD-model induced abnormalities seem

to be improved likewise, such as microgliosis (Zhang et al., 2018) and mitochondrial deficits

(Reddy et al., 2021). Importantly, most of the mentioned preclinical studies also reported

protective effects on cognitive function, such as for learning and memory, next to the

alterations concerning plaques, tangles and neuronal loss (Ai et al., 2020, Chao et al., 2020,

Halliday et al., 2017, Huang et al., 2018, Jin et al., 2017, Ma et al., 2017, Olesen et al., 2016,

Qiao et al., 2016, Reddy et al., 2021, Zhang et al., 2018). The positive effect on cognition has

been confirmed by the randomized controlled trial of Torrisi et al. (2019). However, this is

contradicted by the findings of Olesen et al. (2017) and Severino et al. (2018). The latter also

found a decreased survival rate in APP/PS1 mice, which in part questions its utility and

safety on the long term, even though chronic SSRI administration via repeated

intraperitoneal injections in this particular study may have created a stressful living

condition for these mice on the whole. In line with this assumption, one emerged theory

suggests that the effects of SSRI on the depression-like phenotype are not determined by

the drug per se, but may be induced by the drug, and, driven by the environment. Especially,

mice that were administered fluoxetine in an enriched condition overall improved their

depression-like phenotype compared to their control littermates, whereas those treated in a

stressful living environment showed a distinct worsening (Alboni et al., 2017).

Furthermore, human intervention studies have been executed. This is exemplified by a

placebo-controlled trial in cognitively healthy older adults (n = 114) with escitalopram by

Sheline et al. (2020). Dosages ranged from 20 to 30 mg and duration from two to eight

weeks. A 9.4% larger reduction in CSF Aβ1–42 levels was found in the overall treated groups

compared to the non-treated group. Additionally, the small single-dose placebo-controlled

crossover trial of Klaassens et al. (2019) showed a protective effect of citalopram (30 mg) on

(characteristic) connectivity loss in the precuneus and posterior cingulate cortex, while it

failed to show effects on cognition. Cognitive functioning was measured using the

NeuroCart test battery, in both mild AD patients (n = 12) and controls (n = 12). Contradictory,

a meta-analysis of 14 randomized placebo-controlled trials suggests a beneficial effect of

SSRI on cognitive performance in AD patients (Xie et al., 2019). On the whole, the majority

of evidence both from animal and human intervention studies support the notion that SSRI

are able to alter Alzheimer’s neuropathology and symptoms.

Besides SSRI, a variety of other compounds are able to modulate the serotonergic system,

such as serotonin (5-HT) receptor antagonists and agonists. Firstly, it has been shown that 5-

HT6 receptor antagonists have positive effects on cognition in preclinical trials (

Hashemi-Firouzi et al., 2018, Shahidi et al., 2019), however, clinical trials with actual AD

https://www.sciencedirect.com/topics/neuroscience/dentate-gyrus
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/gliosis
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/preclinical-study
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/randomized-controlled-trial
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/survival-rate
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/intraperitoneal-injection
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/fluoxetine
https://www.sciencedirect.com/topics/neuroscience/escitalopram
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patients fail to prove significant effects (for review: Andrews et al., 2018; Khoury et al., 2018

). Not only the 5-HT6 receptor, but also the 5-HT1A receptor has gained interest. The partial

5-HT1A receptor agonist tandospirone has been shown to improve anxiety, depression,

agitation, irritability and delusion in AD and vascular dementia patients, as assessed with

the Neuropsychiatric Inventory and Mini-Mental State Examination score (Sato et al., 2007).

Similarly, NAD-299, a high affinity 5-HT1A receptor antagonist, has been shown to produce

numerous effects in a streptozotocin-induced AD rat model, both on Aβ plaque load in the

cortex and hippocampus (Afshar et al., 2018), as well as on hippocampal oxidative stress,

damage and neuronal connections (Afshar et al., 2019). Remarkably, similar effects were

observed by Afshar et al. (2019) after administration of the 5-HT2A receptor agonist TCB-2.

On the contrary, pimavanserin, an inverse 5-HT2A receptor agonist, has been shown to

reduce Aβ in the cortex, hippocampus and CSF, accompanied by improvement in cognitive

function in APP/PS1 mice (Yuede et al., 2021). Cognition was improved as well in a trial with

the 5-HT2A receptor antagonist desloratadine, using the same type of transgenic mice (

Lu et al., 2021). Additional findings include improved microglial phagocytosis, microglial-

plaque interaction and neuronal plasticity, accompanied by reduced neuroinflammation,

and, decreased Aβ plaques in the CA1 region of the hippocampus. Furthermore, two types of

5-HT4 receptor agonists (RS 67333 and SSP-002392) showed promising effects on learning

and memory, in combination with decreased Aβ plaques in several brain regions of

transgenic AD mice (Giannoni et al., 2013, Tesseur et al., 2013). However, the effect on

plaques seems dependent on treatment duration and onset, as Tesseur et al. (2013) and

Giannoni et al. (2013) failed to replicate these effects in some of the intervention arms. The

decrease in Aβ plaques in the hippocampus combined with improved cognition was also

reported after administration of a 5-HT7 receptor agonist named AS19 (Shahidi et al., 2018).

This agonist has also shown to decrease hippocampal apoptosis and improve plasticity in an

AD model of male Wistar rats (Hashemi-Firouzi et al., 2017, Shahidi et al., 2018). Finally, a

clinical trial has been conducted with the 5-HT3 receptor antagonist ondansetron, which

failed to show any effect on cognitive parameters (Dysken et al., 2002). Overall, these

studies suggest that 5-HT1A/2A/4/6/7 receptor (ant)agonists exert varying effects related to

AD pathology and clinical symptomatology (Table 2).

Table 2. Preclinical studies in AD mouse models or human intervention trials investigating

the effect of serotonin receptor (ant)agonists administration on Aβ plaque load and/or

related cognitive and/or behavioral functioning.
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Multiple-

armed

randomized

controlled

trial

Male Wistar

rats (adult),

injected with

streptozotocin

54 5-HT1A receptor

antagonist (5

micrograms/day),

intracerebrally

injected

1 month Novel object

recognition

test, open

field test and

passive

avoidance

task

- Dec

plaq

and

- Dec

loss

- Dec

loss

Multiple-

armed

randomized

controlled

trial

Male Wistar

rats (adult),

injected with

streptozotocin

50 5-HT1A antagonist

and 5-HT2A agonist

(5

micrograms/day),

intracerebrally

injected

1 month –
- Dec

hip

oxid

dam

con

Double

blinded

placebo-

controlled

trial

Probable AD

patients (mild

to moderate)

185 Selective 5-HT3

receptor

antagonist:

ondansetron (20–

100

microgram/day)

24 weeks Alzheimer's

Disease

Assessment

Scale-

Cognitive

Subscale,

Clinician's

Interview-

Based

Impression

of Change

- No 

cog

fun

Multiple-

armed

randomized

controlled

trial

Male APP/PS1

mice (1–2

months)

59 5-HT4 receptor

antagonist and/or

partial agonist

RS67333 (2 

1–3 months Novel object

recognition

test

- The

red

plaq

cort

Author,

year

Study

design

Human

subjects or

AD mouse/rat

model

Total

sample

size

Serotonin receptor

(ant)agonist Duration

Behavioral

tests

Overal

effect

Afshar

et al.

(2018)

Afshar

et al.

(2019)

Dysken

et al.

(2002)

Gianno

ni et al.

(2013)



mg/kg/week),

intraperitoneal

ent

effe

dep

dur

(you

trea

dim

pre

ant

trea

- The

red

and

you

- The

pre

cog

dys

Multiple-

armed

randomized

controlled

trial

Male Wistar

rats (adult),

injected with

streptozotocin

40 5-HT7 receptor

agonist: AS19 (1

microgram/day),

intracerebrally

injected

1 month –
- Dec

hip

apo

- Imp

plas

Author,

year

Study

design

Human

subjects or

AD mouse/rat

model

Total

sample

size

Serotonin receptor

(ant)agonist Duration

Behavioral

tests

Overal

effect

Hashe

mi-

Firouzi

et al.

(2017)



Multiple-

armed

randomized

controlled

trial

Male Wistar

rats (adult),

injected with

streptozotocin

38 5-HT6 receptor

antagonist

SB258585 (dose

unclear),

intracerebrally

injected

1 month Novel object

recognition,

passive

avoidance

learning test

- Dec

apo

- Imp

and

Multiple-

armed

randomized

controlled

trial

Male APP/PS1

mice (7

months)

40 Selective 5-HT2A

receptor

antagonist:

desloratadine (20 

mg/kg/day), by oral

gavage

3 months Y maze,

Morris water

maze, new

object

recognition

test

- Red

plaq

regi

- Dec

neu

- Imp

term

in D

- Incr

asso

mic

- Enh

mic

pha

- Imp

fun

Open-label

trial

AD or

vascular

dementia

patients

30 Partial 5-HT1A

receptor agonist:

tandospirone

(mean: 19.6 

mg/day)

± 2 months NPI and

MMSE
- Imp

anx

dep

agit

Author,

year

Study

design

Human

subjects or

AD mouse/rat

model

Total

sample

size

Serotonin receptor

(ant)agonist Duration

Behavioral

tests

Overal

effect

Hashe

mi-

Firouzi

et al.

(2018)

Lu et

al.

(2021)

Sato et

al.

(2007)



irrit

delu

Multiple-

armed

randomized

controlled

trial

Male adult

Wistar rats,

injected with

Aβ

40 5-HT7 receptor

agonist (1

microgram/day),

intracerebrally

injected

1 month Novel object

recognition

test and

passive

avoidance

task

- Dec

hip

apo

- Dec

plaq

- Imp

plas

- Imp

and

Multiple-

armed

randomized

controlled

trial

Male Wistar

rats (8–10

weeks),

injected with

Aβ

30 Selective 5-HT6

receptor

antagonist: SB-

258585 (24 

microgram/kg/day),

intracerebrally

injected

1 month Open field

test, passive

avoidance

learning test,

novel object

recognition

test,

- Imp

term

or s

plas

- Les

mem

Author,

year

Study

design

Human

subjects or

AD mouse/rat

model

Total

sample

size

Serotonin receptor

(ant)agonist Duration

Behavioral

tests

Overal

effect

Shahid

i et al.

(2018)

Shahid

i et al.

(2019)



Multiple-

armed

randomized

controlled

trial

hAPP/PS1

mice (4–13

months)

42 5-HT4 receptor

agonist: SSP-

002392 and

RS67333 (5 and 1 

mg/kg/day), by oral

gavage

26–37 days

and 4

months,

respectively

Morris water

maze
- SSP

red

plaq

cort

RS6

- Bot

spa

and

Multiple-

armed

randomized

controlled

trial

APP/PS1 mice

(2 months)

265 5-HT2A inverse

receptor agonist

(3–6 mg/kg/day),

subcutaneous

pump

4 months Open field

test,

sensorimotor

battery,

Morris water

maze,

elevated plus

maze, novel

object

recognition,

- Red

plaq

HC 

- Imp

fun

Abbreviations: 5-HT: 5-hydroxytryptamine (serotonin); AD: Alzheimer’s disease; APP: amyloid-precursor

protein; DG: dentate gyrus; HC: hippocampus; PS1: presenilin 1; CSF: cerebrospinal fluid; MMSE: Mini-

Mental State Examination Score; NPI: neuropsychiatric inventory.

3.2. Brain serotonergic alterations in response to fecal microbiota
transplantation

The role and manipulability of microbiota in brain serotonergic alterations in AD can be

studied using FMT. Unfortunately, such studies are currently lacking in both AD mouse

models, as well as patients. Nevertheless, Hata et al. (2019) conducted such a transfer from

Author,

year

Study

design

Human

subjects or

AD mouse/rat

model

Total

sample

size

Serotonin receptor

(ant)agonist Duration

Behavioral

tests

Overal

effect

Tesseu

r et al.

(2013)

Yuede

et al.

(2021)

https://www.sciencedirect.com/topics/neuroscience/presenilin-1


four anorexia nervosa patients, as well as four healthy age-matched individuals, to four-

week old germ-free female mice (n = 72). A decrease in serotonin content of the brainstem

was significantly observed afterwards, in addition to a trend of decreased serotonin and

increased 5-HIAA content in other brain regions. Behavioral testing (i.e. open field and

marble burying) indicated promising alterations. More specifically, mice receiving FMT from

the anorexia nervosa patients showed more anxiety-like and compulsive behavior.

Correspondingly, a study in which FMT was conducted from 11 schizophrenia patients to

five-week old antibiotics-treated (pathogen-free) mice in comparison with FMT from ten

control individuals, showed an increase in hippocampal and striatal serotonin, prefrontal

cortex and striatal kynurenine and hippocampal TPH-1 expression (Zhu et al., 2020). These

findings were accompanied by an increase in learning and memory impairment as assessed

with the elevated plus maze, reciprocal social interaction, forced swim test, open field test,

Barnes maze, three chamber sociability test and novel object recognition test. Both studies

thus evidenced that FMT has the ability to affect the serotonergic neurotransmission in

addition to clinical functioning, at least in germ-free mice. Moreover, a human intervention

study including Caucasians (n = 24) aged 50–70 with treatment-naïve metabolic-syndrome

showed a positive trend in both hypothalamic and thalamic SERT binding after FMT from

post-gastric bypass patients compared to oral butyrate supplementation (

Hartstra et al., 2020). The serotonin transporter was visualized in both regions with region

of interest analysis using single photon emission computed tomography (SPECT) after

injection of I-ioflupane as the radioligand. Additionally, significant differences in

microbiota composition between the two groups were measured in the fecal microbiota

analysis. In conclusion, these handful of studies indicate that FMT is able to exert

serotonergic changes in the brain and may even have profound subsequent effects on both

cognitive and behavioral aspects.

3.3. Brain serotonergic alterations as a result of dietary interventions

Less drastic, but, at the same time, more difficult to control for, is the dietary approach.

Firstly, a randomized controlled preclinical trial focussed on the western diet, defined by its

high fat content, compared to a standard diet as a possible modulator of the gut-brain axis (

Ohland et al., 2016). Composition of the diets were 28% and 29% protein, 49% and 55%

refined carbohydrates, and, 33% and 13% fat, respectively. The study had a small sample size

of only three to four male mice (6 weeks old) per group. After the three-week intervention

period, behavioral tests such as the elevated Barnes maze and latency to step down were

performed. The diet group showed a decrease in anxiety-like and exploratory behavior. Also,

neurotransmitter analyses of the brain revealed an enhancing effect on tryptophan levels in

the hippocampus. Nevertheless, hippocampal serotonin levels and TPH2 expression
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remained unchanged. The larger study of Beilharz et al. (2018) also reported on the effects

of the western diet compared to a standard diet, although for a total of about four weeks in

male rats (n = 60). Importantly, the diet increased 5-HT1A while it decreased 5-HT2C

receptor gene expression in the hippocampus. These effects were absent in the perirhinal

cortex. Behavioral tests (elevated plus maze, object recognition task and place recognition

task) revealed negative effects on spatial memory, but not anxiety. Additional findings were

the decreased microbial diversity. Remarkably, the observed effects on spatial memory and

microbial diversity could be prevented by a two-week treatment of the probiotic containing

Bifidobacterium longum, infantis and breve, Lactobacillus acidophilus, paracasei, bulgaricus

and plantarum, as well as Streptococcus salivarius. In another randomized controlled trial

male rats (n = 12) were also fed a high fat diet for four weeks, although in this case, until

obesity. These findings even revealed a decrease in whole brain serotonin, accompanied by

the overgrowth of Bacteroides as assessed from fecal samples (Labban et al., 2020).

Secondly, Egerton et al. (2020) investigated the effect of a specific dietary component,

namely fatty fish oil, combined with fluoxetine added to a standard diet for two weeks in

maternally separated male rats (n = 58). Behavioral tests, such as the elevated plus maze,

open field test and forced swim test, revealed improvement in depression and anxiety. In

contrast, the subsequent biochemical analysis showed no significant difference in brainstem

serotonin levels. Unfortunately, no other brain regions were investigated, complicating the

interpretation of findings. However, both fatty fish oil and fluoxetine, separately or

combined, did lower the level of serotonin’s main metabolite, 5-HIAA, in the brainstem. The

change of gut microbiota composition and SCFA production thus suggest a potential

modulatory role in this effect. For instance, increased prevalence of Bacteroidetes and

Prevotellaceae in combination with reduced levels of butyrate seemed characteristic for the

fatty fish oil group.

Finally, the most compelling evidence so far, even though it was not a whole diet approach,

comes from Musumeci et al., 2015, Musumeci et al., 2017 and Noristani et al. (2012), as

previously mentioned. Noristani and colleagues examined reduced CA1 hippocampal

intraneuronal Aβ in the triple transgenic AD mouse model following an acute one month

increase of dietary tryptophan intake (0.40 g tryptophan/100 g), whilst

Musumeci et al. (2015) provided direct evidence that an alike diet increased the

serotonergic neurotransmission, particularly in the hippocampus of aged rats. In the same

way, tryptophan-deprived (non-AD) mice recently showed significant reduction in 5-HT and

5-HIAA levels in a brain region-specific manner, namely in hippocampus, brainstem, cortex

and striatum (Zhang et al., 2022).
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3.4. Brain serotonergic alterations induced by pre- and probiotics

A variety of studies highlight the effect of pre- and/or probiotics on the brain’s serotonergic

system, often in combination with behavioral and cognitive changes. Details of all the

included studies can be found in Table 3.

Table 3. Preclinical intervention studies in animal models investigating the effect of pre- and

probiotics on brain serotonin levels, receptors, transporters, enzymes and related gene

expression.

Male

Sprague–

Dawley rats

(3 weeks)

59 14 – Lactobacillus casei 54-

2-33 and inulin

(synbiotic)

- The synbio

decreased 

density of 

HT1A recep

HC, increas

HT1A mRN

expression

and exerte

anxiogenic

Male and

female

zebrafish of

heterozygous

“wild type”

strain (4–6

months)

24 28 – Lactobacillus

rhamnosus IMC 501
- The probio

increased g

expression

TPH1/2, SL

and MAO i

- The probio

enhanced

explorative

behavior a

attention/a

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Barrer

a-

Bugue

ño et

al.

(2017)

Borrell

i et al.

(2016)
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Male SPF

BALB/c mice

(3–4 weeks)

24 30 CMS Lactobacillus reuteri
- CMS induc

decrease in

brain 5-HT

HT-positiv

the DRN.

- Probiotic e

whole brai

and the nu

5-HT-posit

in the DRN

*the effect of L.

without CMS w

studied

Senescence-

accelerated

mouse prone

8 (14 weeks)

36 280–301 Accelerated aging

model

Lactobacillus casei

subsp. casei 327 and

Lactobacillus paracasei

K71

- The probio

increased b

HT levels a

downregul

MAO

- It reduced 

related cog

decline

Wild-type

zebrafish

(adult)

Unclear ± 30 CMS Lactobacillus

plantarum
- The probio

induced th

upregulati

HT transpo

SLC6A4a, b

SLC6A4b

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Chen

et al.

(2019)

Corpuz

et al.

(2018)

Davis

et al.

(2016)



- It also had 

anxiolytic 

*the effect of th

probiotic on he

non-stress indu

zebrafish was n

studied

Male

Sprague-

Dawley rats

(adult)

20 14 – Bifidobacterium

infantis 35624
- The probio

increased p

concentrat

tryptophan

decreased 

in frontal c

- No effect o

HT/5-HIAA

the frontal

no effect o

5-HT levels

Swiss

Webster

germ-free

mice (adult)

50 14 – Bifidobacterium

dentium
- The probio

increased 5

expression

region of H

- It increase

acetate lev

Naturally

farrowed

intact male

24 31 – polydextrose and

galactooligosaccharide
- The prebio

decreased

hippocamp

striatal 5-H

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Desbo

nnet et

al.

(2008)

Engevi

k et al.

(2021)

Flemin

g et al.

(2019)



pigs (new-

born)
- The probio

improved

recognition

memory an

explorator

behavior

- Hippocamp

correlated 

explorator

behavior, b

with recog

memory

Chicks (1

week)

12 42 Induced stress (with

a higher density of

chicks per square

meter)

Enterococcus faecium
- A higher d

chick per s

meter incr

brain 5-HT

- The probio

lowered br

levels, how

only in the

density gro

Female

Sprague-

Dawley rats

(6–8 weeks)

24 7 – galacto-

oligosaccharides
- The prebio

no effect o

5-HT2A rec

protein and

levels

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Ibrahi

m et al.

(2018)

Kao et

al.

(2018)



Male Wistar

rats (age not

mentioned)

50 28 CMS Bifidobacterium

longum, Lactobacillus

rhamnosus

(probiotics) and

fructo-oligosaccharide

and galacto-

oligosaccharide

(prebiotics)

- CMS decre

TPH2 and 5

while it inc

IDO levels 

and fronta

- Pre- and pr

enhanced T

and 5-HT, b

decreased 

levels in H

frontal cor

*the effect of th

and prebiotics 

CMS was not s

Male

specific-

pathogen-

free (SPF)

Sprague–

Dawley rats

(adult)

32 26 Chronic restraint

stress

Lactobacillus helveticus

NS8
- Stress dete

cognition, 

and depres

- The probio

restored 5-

levels in H

improved c

(memory),

and depres

Male pups (2

weeks) from

timed-

pregnant

female

C57BL/6J

32

pups

28 Early life stress Lactobacillus

plantarum PS128
- 5-HT levels

decreased,

alterations

HIAA level

stressed m

non-stress

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Li et al.

(2019)

Liang

et al.

(2015)

Liu et

al.

(2015b)



mice, and,

naïve adult

male

C57BL/6J

mice (8

weeks)

- The probio

reduced 5-

stressed m

naïve mice

reduced 5-

but increas

- The probio

increased

locomotor 

and decrea

anxiety in 

naïve and s

mice

- It decrease

depressive

behavior in

stressed m

Male germ-

free

C57BL/6JNarl

mice (6

weeks)

18 16 – Lactobacillus

plantarum PS128
- The probio

increased 5

5-HIAA lev

striatum, h

not in pref

cortex or H

- It decrease

anxiety-lik

behavior a

increased

locomotor 

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Liu et

al.

(2016)



Male Wistar

rats (7–8

weeks)

24 28 CMS Lactobacillus

fermentum PS150
- CMS induc

memory an

learning de

and a drop

whole brai

- Probiotic p

the memor

learning de

and the dro

whole brai

*the effect of th

probiotic witho

was not studie

Specific-

pathogen-

free male

Sprague-

Dawley rats

(adult)

18 14 hyperammonaemia-

induced

neuroinflammation

Lactobacillus helveticus
- Hyperamm

increased 5

metabolism

(increased 

unchanged

cerebellum

prefrontal 

- It induced 

like behavi

cognitive

dysfunctio

- The probio

improved c

and reduce

anxiety; it 

5-HT (not 5

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Liu et

al.

(2019)

Luo et

al.

(2014)



in HC and

cerebellum

Male Fischer

344 rats (3

weeks)

126 28 Inescapable stress Galactooligosaccharide

and polydextrose
- Inescapabl

induced a d

in 5-HT1A 

mRNA leve

amygdala a

- The prebio

attenuated

induced de

in 5-HT1A 

mRNA leve

amygdala a

rostral late

not other p

the DRN

- The prebio

enhanced

Lactobacillu

feces

Male Fischer

344 rats (± 3

weeks)

28 28 – Galacto-

oligosaccharides

(prebiotic) in

combination with

lactoferrin and milk

fat globule membrane

- Diet-induc

increase in

Lactobacillu

correlated

positively w

HT1A recep

mRNA in th

dorsoventr

of the DRN

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Mika

et al.

(2017)

Mika

et al.

(2018)



HT2C recep

the lateral

amygdala

- The diet re

anxiety-lik

behavior

Charles

foster male

albino rats

(adult)

56 days 48 1,2-Di-

methylhydrazine-

induced systemic

oxidative stress

Escherichia coli CFR 16
- The induce

oxidative s

decreased 

HT levels

- The probio

enhanced b

HT levels

*the effect of th

probiotic in rat

induced oxidat

was not studie

Male CD1

mice (6–8

weeks)

18 21 Lipopolysaccharide-

induced sickness

and anxiety

Non-digestible

galacto-

oligosaccharide

- LPS induce

increase in

5-HT2A rec

levels and 

anxiety

- The prebio

counteract

effects on c

5-HT2A rec

levels, and

anxiety

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Pandey

et al.

(2015)

Savign

ac et

al.

(2016)



*there was no

significant diff

cortical 5-HT2A

receptor levels 

control mice re

prebiotics

Male

C57BL/6

mice (6–8

weeks)

30 28 CMS-induced

depression

Clostridium butyricum

WZMC1018
- CMS reduc

levels in H

induced

depressive

behavior

- The probio

elevated th

hippocamp

levels and

improved

depressive

behavior

*the effect of th

probiotic in he

mice without C

not tested

Male BALB/c

mice (new-

born) and

their

mothers

(adult)

20

pups,

11

dams

77 – Galacto-

oligosaccharides and

long-chain fructo-

oligosaccharide

- The prebio

decreased

tryptophan

HT levels in

prefrontal 

and enhan

HT/5-HIAA

the somato

cortex; no

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Sun et

al.

(2018)

Szklan

y et al.

(2020)



differences

measured 

amygdala o

- It decrease

expression

HT1A recep

mRNA in th

prefrontal 

but not am

or HC

- TPH2 was

unaffected

prebiotic

- It decrease

anxiety-lik

repetitive

behaviors a

enhanced 

behavior in

adulthood

- It enhance

acetate, pr

and butyra

in fecal sam

Male

C57BL/6J

mice (6

weeks)

24–32 35 CMS 20 different lactic acid

bacteria strains, which

can be subdivided into

Bifidobacterium

longum subsp., Infantis,

Bifidobacterium

- E41, S60 an

increased l

5-HT and 5

HC

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Tian et

al.

(2019a)



longum subsp. Longum,

Bifidobacterium breve,

Lactobacillus

helveticus,

Lactobacillus

rhamnosus,

Lactobacillus

fermentum,

Lactobacillus

plantarum

- Probiotics 

suggested 

improve

depression

behavior

- F45BB and

increased a

propionate

butyrate; E

increased b

in cecum s

*the effect of th

probiotics on h

mice without C

not tested

Male

C57BL/6

mice (6

weeks)

40 42 CMS Bifidobacterium breve

CCFM1025
- CMS induc

depression

anxiety-lik

symptoms

decreased

hippocamp

levels

- The probio

enhanced

hippocamp

HIAA level

HT)

- No effect o

or SLC6A4 

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Tian et

al.

(2020)



expression

was observ

- The probio

increased S

levels in th

*the effect of th

probiotic witho

was not studie

Male adult

rats

30 70 Model of

depression: Flinders

Sensitive Line of

rats (compared to

resistant line)

Lactobacillus helveticus

R0052 and

Bifidobacterium

longum R0175

- Probiotics 

affect hipp

or prefront

5-HT or its

metabolite

HIAA)

- The probio

no signific

on anxiety

memory o

behavior

Male

C57BL/6

mice (8

weeks) and

retired male

CD-1 breeder

mice

40 28 Chronic social

defeat stress

Lactobacillus reuteri 3
- Stress decr

TPH1 mRN

increased S

and IDO m

the prefron

cortex

- The probio

reversed th

decrease in

mRNA, and

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Tillma

nn et

al.

(2018)

Xie et

al.

(2020)



increase in

and IDO m

- No signific

differences

SLC6A4 or 

mRNA wer

between co

with(out) p

- No signific

effects on S

levels in fe

observed

C57BL/6J

male mice (8

weeks)

30 28 – Akkermansia

muciniphila strain

ATCC BAA-835,

- The probio

increased

hippocamp

levels; it in

TPH2 expr

HC

- The probio

decreased 

SLC6A4 an

receptor 1A

expression

Male

Sprague

Dawley rats

(8 weeks)

36 84 Induced aging with

D-galactose

injections

Lactobacillus

plantarum DR7
- D-galactos

injections 

cognitive f

memory, a

and TPH1

expression

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect

Yaghou

bfar et

al.

(2020)

Zaydi

et al.

(2020)



- The probio

increased T

expression

improved c

function, m

and anxiet

*the effect of th

probiotic was n

studied in heal

Abbreviations: 5-HIAA: 5-hydroxyindoleacetic acid; 5-HT: 5-hydroxytryptamine (serotonin); 5-HTP: 5-

hydroxytryptophan; Aβ: amyloid-beta; AD: Alzheimer’s disease; APP: amyloid-precursor protein; CMS:

chronic mild stress; DG: dentate gyrus; DRN: dorsal raphe nucleus; HC: hippocampus; IDO: indoleamine

2,3-dioxygenase; MAO: monoamine oxidase; PS1: presenilin 1; P-tau: phosphorylated tau; SSRI: selective

serotonin reuptake inhibitors; SCFA: short-chain fatty acid; TPH: tryptophan hydroxylase.

Firstly, nine randomized controlled preclinical trials reported the effects of a probiotic

containing Lactobacillus plantarum. An anxiolytic effect of the probiotic was confirmed by

several studies (Davis et al., 2016, Liu et al., 2016, Liu et al., 2015b, Morshedi et al., 2018,

Zaydi et al., 2020). The same holds true for improvement in learning (Morshedi et al., 2020)

and memory (Zaydi et al., 2020). Besides cognitive alterations, Zaydi et al. (2020) showed

the enhancing effect of the probiotic on serotonin-related enzymes, in this case TPH1, in a d-

galactose-induced rat model of aging. Additionally, the probiotic increased serotonin in the

whole brain (Mustafa et al., 2020), with the hippocampus in specific (Morshedi et al., 2020),

next to the amygdala (Morshedi et al., 2018). Also, an increase in the expression of the

serotonin transporter (5-HTT or SLC6A4) in healthy rats has been reported (Reza et al., 2019

). This is confirmed in stressed Zebrafishes, specifically for the serotonin transporter

subtype SLC6A4a (Davis et al., 2016). Findings seem contradicting in the case of its

metabolite 5-HIAA. Liu et al. (2016) showed an increase in the striatum, but not prefrontal

cortex or hippocampus of male germ-free mice, while Liu et al. (2015b) showed an overall

decrease in male mice with early life stress.

Author,

year Population

Total

sample

size

Duration

(days) Disease model Pre- and/or probiotic

Overall outco

effect
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Other Lactobacillus strains show similar effects. Borrelli et al. (2016) and Xie et al. (2020)

reported an increased DNA expression of serotonin-related enzymes in the brain, as well as

the serotonin transporter, in zebrafish and male adult mice, respectively. Notably,

Xie et al. (2020) found only effects of the probiotic when stress was induced. Furthermore,

related preclinical trials observed enhancement of brain serotonin levels, either in a specific

region such as the hippocampus, or, the whole brain (Chen et al., 2019, Liang et al., 2015,

Liu et al., 2019, Wei et al., 2019). On the contrary, serotonin was found to be reduced in the

hippocampus and cerebellum of rats with hyperammonaemia-induced neuroinflammation,

as reported by Luo et al. (2014). Administration of the probiotic combined with inulin

enhanced both the expression and density of the 5-HT1A receptor in the dentate gyrus and

hippocampus of rats (Barrera-Bugueño et al., 2017). Moreover, improvement of anxiety (

Barrera-Bugueño et al., 2017, Liang et al., 2015, Luo et al., 2014, Wei et al., 2019) and

cognitive function, including learning and memory, have been reported (Liang et al., 2015,

Liu et al., 2019, Luo et al., 2014).

Four randomized placebo-controlled preclinical trials with Bifidobacterium are

contradicting. For instance, Tian et al. (2020) found an increase in hippocampus, but not

prefrontal cortex, of serotonin levels in chronically-stressed adult male C57BL/6 mice fed

with the infantis strain. With the same strain, Desbonnet et al. (2008) found decreased 5-

HIAA levels in the frontal cortex, albeit in rats, while the 5-HIAA/5-HT ratio, as a measure of

catabolic turnover, and, overall serotonin content remained unaffected. On the other hand,

Tian et al. (2019b) reported an increase in serotonin levels in the prefrontal cortex, but not

the brainstem, of chronically stressed adult male C57BL/6J mice after administration of the

Breve strain. Furthermore, Engevik and colleagues showed that administration of the

dentium strain to germ-free mice enhanced the expression of the 5-HT2A receptor primarily

in the CA1 subregion of the hippocampus. Changes were accompanied by SCFA composition

changes in feces in some cases. Acetate was found to be increased in the trial with the

dentium strain (Engevik et al., 2021), while acetate, n-butyrate, propionate and isobutyrate

were found to be decreased with the infantis strain (Tian et al., 2019b).

Four other types of probiotics were also found to enhance serotonin levels in the brain.

Pyrroloquinoline quinone-producing Escherichia coli affected whole brain serotonin levels in

subcutaneously 1,2-dimethylhydrazine-injected rats (Pandey et al., 2015), while Clostridium

(Sun et al., 2018) and Akkermansia (Yaghoubfar et al., 2020) both affected hippocampal

levels in male stressed and non-stressed mice, respectively. In addition, Clostridium also

decreased MAO, SLC6A4 and 5-HT1A/2A/5/6 receptor expression, while simultaneously

increasing TPH2 expression in the hippocampus. Next, Clostridium also improved
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depressive-like behavior (Sun et al., 2018). On the other hand, Enterococcus faecium had the

opposite effect on whole brain serotonin content in stressed goslings (Ibrahim et al., 2018).

Combinations of several probiotics improved age-related cognitive decline (

Corpuz et al., 2018) and possibly depression in mice or rats (Tian et al., 2019a,

Tillmann et al., 2018). No effect was found on anxiety, social behavior or memory, as

reported by Tillmann et al. (2018). In general, brain serotonin levels were increased in the

whole brain of senescence-accelerated mice (Corpuz et al., 2018). In rats, the same effect

was found specifically in the hippocampus (Li et al., 2019, Tian et al., 2019a) and frontal

cortex (Li et al., 2019). However, Tillmann et al. (2018) found no effect in the prefrontal

cortex and hippocampus in a genetic rat model of depression. Nevertheless, the probiotic

mixture, enriched with prebiotics, showed an increase in TPH2 and a decrease in IDO in

both hippocampus and (pre)frontal cortex of male Wistar rats (Li et al., 2019). Apart from

TPH2, MAO levels were observed to be downregulated in an alike probiotic mixture

intervention too (Corpuz et al., 2018).

Finally, the use of only prebiotics has been previously looked at with regards to brain

serotonin levels albeit by few studies so far. Firstly, it affected cognitive function in pigs (

Fleming et al., 2019), as well as anxiety and behavior in new-born mice and their mothers (

Szklany et al., 2020). Secondly, findings on the effect on expression of serotonin receptors 5-

HT2A, 5-HT2C and 5-HT1A are rather contradictive between prebiotic type and/or study (

Kao et al., 2018, Mika et al., 2017, Mika et al., 2018, Savignac et al., 2016, Szklany et al., 2020).

Thirdly, serotonin levels were found to be decreased in specific areas of the brain in pigs and

male BALB/c mice (Fleming et al., 2019, Szklany et al., 2020).

4. Discussion

The involvement of the microbiota-gut-brain axis in AD with possible implications for

prevention and treatment have been highlighted previously (Arora et al., 2020,

Kesika et al., 2021, Liu et al., 2020). Additionally, the suggestion of a(n) (in)direct link

between the axis and AD development due to neurotransmitter alterations (serotonin,

gamma aminobutyric acid) has recently been raised by a Mendelian randomization analysis

(Zhuang et al., 2020). Notably, there is also a phase three trial ongoing with GV-971, a

pharmaceutical drug derived from seaweed extracts (sodium oligomannate), targeting the

gut microbiota (NCT04520412; for review: Cummings et al., 2021). These recent

developments highlight the importance of the axis in the search for disease-modifying

therapies, apart from the modifying role of serotonin and its derivatives within the

microbiota-gut-brain axis in the development of AD in particular.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enterococcus-faecium
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gosling
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/genetics
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/indoleamine-2-3-dioxygenase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/wistar-rat
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/monoamine-oxidase-a
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/disease-course
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mendelian-randomization
https://www.sciencedirect.com/topics/neuroscience/algal-extract


4.1. Modulatory effects of the serotonergic system in Alzheimer’s disease

The literature search was aimed at finding out if and how serotonergic alterations and AD

development are related. In this regard, the majority of enlisted studies, mainly preclinical

but also a few human intervention trials, show that SSRI and serotonin receptor

(ant)agonists may very well modify the underlying neuropathology, with inclusion of

clinical symptoms. Though the effectiveness of treatment might be dependent on the

disease stage, as already highlighted by the trial of Giannoni et al. (2013). The suggested

modulatory involvement of the serotonergic system is further strengthened by mechanistic

in vitro studies. This is exemplified by the work undertaken by Hornedo-Ortega et al. (2018),

who showed that serotonin is able to prevent destabilization of Aβ oligomers and fibrils and

thus insoluble plaque formation. This effect could be established by disruption of salt

bridges between and within Aβ42 protofibrils, as well as beta-sheet structure (

Gong et al., 2021). Apart from the effect on plaque burden, serotonin might also exert

neuroprotective effects mediated via its action on heat shock protein 70, SIRT-1 and SIRT-2

gene expression, as evidenced in rat cells (Hornedo-Ortega et al., 2018).

On the contrary, few trials, failed to replicate the effects of SSRI on Aβ plaque reduction in

the hippocampus (Von Linstow et al., 2017) alongside mitigating the cognitive dysfunction (

Klaassens et al., 2019, Olesen et al., 2017, Severino et al., 2018). In the case of

Klaassens et al. (2019), this could be due to the small sample size and the single

administration dosage. The unexpected findings of the three animal trials might be partially

explained by administration route, since the trials belong to the minority that administered

the SSRI orally. Other factors, such as sample size, intervention duration and type of AD

model, do not seem to be crucially different as compared to the other animal trials that did

find an effect. Furthermore, the effects of SSRI on P-tau remain ambiguous, since the

findings of Halliday et al. (2017) and Jin et al. (2017) contradict each other even though both

trials involved mice that overexpressed the human tau mutation. Finally, the effect of SSRI

on the neocortex plaque load, and, 5-HT3 receptor antagonists on cognition, seem absent,

although again this might be due to the administration route. Nevertheless, the majority of

included studies supports the overall hypothesis that brain serotonergic neurotransmitter

system alterations are intrinsically involved in AD pathophysiology, thereby suggesting that

interfering with its evolution from the earliest stages onwards could be a viable target for

prevention, and, possibly (symptomatic) treatment. This notion is consistent with the

review of Joshi et al. (2020) concerning multiscale and multilevel serotonergic modeling

approaches for AD.
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4.2. The potential of the microbiota-gut-brain axis in modulating the
brain’s serotonergic system

The question hereafter remained whether these serotonergic alterations could be prevented

or prohibited by modulating the microbiota-gut-brain axis. Indeed, nutrition, probiotics,

prebiotics and FMT seem to affect serotonin levels, serotonin receptors, related enzyme

expression (TPH1, TPH2, MAO, IDO) and serotonin transporter (SLC6A4) expression in the

brain. This observed connection between gut and brain with respect to serotonin, might be

the consequence of multiple different interactions as visualized in Fig. 3. One example could

be modulation of vagus nerve activity similarly as is the case with SSRI (

McVey Neufeld et al., 2019). In this study, for instance, oral SSRI administration enhanced

vagus nerve activity, and, vagotomy subsequently removed its antidepressant effect. More

recently, bacterial tryptophan metabolites have even been linked to vagus nerve

stimulation, through the activation of epithelial sensory enteroendocrine cells of the

intestine (Ye et al., 2021). In addition, serotonergic changes in the included studies were

often accompanied by cognitive or behavioral changes. As an example, the prebiotic trial of

Liu et al. (2019) revealed both cognitive improvement as well as whole brain serotonin level

enhancement. Although improvement in brain function might be a direct effect of the

enhanced serotonin level (Fig. 3), it could also be related to the alternative fate of dietary

tryptophan, namely the kynurenine pathway. Metabolites of this pathway, such as

quinolinic acid (Fig. 1), have shown to be neurotoxic through a variety of mechanisms like

agonizing the n-methyl-d-aspartate receptor (for review: Lugo-Huitrón et al., 2013). Thus,

inhibiting the formation of such compounds through the action of microbiota, for instance

by lowering the activity of IDO or availability of tryptophan, might reduce neurotoxicity

which is logically beneficial for overall brain health. Accordingly, Yu et al. (2015) showed the

positive effect of IDO inhibition on cognition, Aβ formation and neuronal loss, while

Parrott et al. (2012) highlighted a preventive effect on anxiety- and depressive-like

symptoms, both in AD mouse models. Notably, not all metabolites of the kynurenic pathway

are necessarily detrimental for the brain. Nicotinamide adenine dinucleotide (NAD ), which

is an essential cofactor important for mitochondrial function, gained interest as a possible

modulator of age-related diseases (for review: Castro-Portuguez and Sutphin, 2020;

Verdin, 2015).
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Fig. 3. Serotonergic functions mediated by gut-brain crosstalk in relation to potential

enhancers. Serotonin (5-HT) is a critical modulator of microbiota-gut-brain axis signaling

and exerts multiple functions throughout the human body that relate to both brain and gut

(outer circle). Its production, availability and activity is influenced in various ways, with

gender, genetics (e.g. enzymatic activity, receptor distribution) and medication (e.g. SSRI) as

main external or physiological (internal) determinants. Firstly, dietary or supplemental

tryptophan (Trp) can be transformed in the gut by the enterochromaffin cells (ECC) to 5-

hydroxytryptophan (5-HTP) by the action of tryptophan hydroxylase (TPH)1, and,

subsequently, to serotonin by aromatic l-amino acid decarboxylase (AADC). Following its
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release, 5-HT interacts with receptors on the enteric nervous system to modulate gut

motility among others, and, to induce further signaling along the vagus nerve. Vagal

afferents further propagate the signal to the dorsal raphe nuclei and the nucleus of the

solitary tract. Both nuclei connect with emotion-regulating brain networks that control

mood, which in effect may further determine eating behavior. Secondly, 5-HT production

via the ECC can also be effectuated by the intake and digestion of dietary fiber or related

prebiotics, following which the microbiota produce short-chain fatty acids (SCFA; e.g.

propionate, butyrate, acetate). These SCFA stimulate the ECC for additional 5-HT synthesis.

Particular strains of gut microbiota can also synthesize neurotransmitters themselves.

Importantly, the intermediate of 5-HT synthesis, 5-HTP, can pass the blood-brain barrier

from the systemic circulation, whereas 5-HT cannot. In neurons, Trp is transformed into 5-

HTP by the action of TPH2, and, further to 5-HT via AADC. The vagus nerve can be

considered as the highway along which 5-HT modulates the gut-brain connection, having a

reciprocal interaction. With regard to Alzheimer’s disease (AD) development, fecal

microbiota transplantations, diet and pre-/probiotics could enhance the abovementioned

pathways, and boost brain serotonergic neurotransmission in the end (e.g. hippocampus;

limbic cortex). This could result in altered behavioral and cognitive outcomes, or, depending

on the disease stage, prevent, attenuate or delay neuroinflammation and thus subsequent

plaque or tangle formation (upper left corner). Further involvement of the alternative fate of

dietary Trp, i.e. the kynurenine pathway, related to neuroinflammatory processes in AD

progression has not been included in this figure. Abbreviations: 5-HIAA; 5-

hydroxyindoleacetic acid; 5-HT: 5-hydroxytryptamine (serotonin); 5-HTP: 5-

hydroxytryptophan; AADC: aromatic l-amino acid decarboxylase; BBB: blood-brain barrier;

DRN: dorsal raphe nuclei; ECC: enterochromaffin cell; ENS: enteric nervous system; FMT:

fecal microbiota transplantation; IBS: irritable bowel syndrome; MAO: monoamine oxidase;

MCI: mild cognitive impairment; NTS: nucleus tractus solitarius (nucleus of the solitary

tract); SCD: subjective cognitive decline; SCFA: short-chain fatty acids; SERT: serotonin

transporter; SSRI: selective serotonin reuptake inhibitors; TPH: tryptophan hydroxylase;

Trp: tryptophan. Brain images (12% formalin-fixated) are at the courtesy of the picture

archive of the Neurobiobank of the Institute Born-Bunge (Antwerp, Belgium; FAGG

registration no. 190113). Created with BioRender.com.

Observed (beneficial) serotonergic alterations, however, are not consistent in all included

intervention trials. For example, the impairment of learning and memory is accompanied by

an increase in hippocampal serotonin levels in one of the FMT trials. This seems

contradictory to the hypothesis that decreased (hippocampal) serotonin levels in AD affect

cognition in addition to the previously described positive effects of SSRI in AD animal

models. As for two of the included dietary interventions, serotonin itself seemed unaffected,
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although serotonin-related changes (e.g. tryptophan or 5-HIAA levels) were observed next

to effectively modulated behavior. However, it should be noted that only serotonin levels in

the brainstem were measured in one trial, compared to a very small sample size in the

other. Moreover, there were only a few dietary trials available, investigating a limited variety

of analytical neurochemical measures. Dietary enrichment with high levels of tryptophan,

however, revealed to reduce Aβ load in a transgenic AD mouse model (Noristani et al., 2012).

Unfortunately, the researchers could not reveal direct serotonergic changes in hippocampus

nor raphe nuclei related to the higher tryptophan intake, apart from increased sprouting of

hippocampal serotonergic fibers in the transgenic AD mouse model (irrespective of diet) as

a potential defense mechanism against Aβ accumulation (Noristani et al., 2012). One

proposed neuroprotective mechanism by which serotonergic sprouting in the vicinity of

plaques in AD brain might exert its effects, is via the hyperpolarization of nearby neurons

through activation of 5-HT1A/B receptors, and subsequent opening of K  channels.

Hyperpolarisation in turn limits Ca  entry, and, hence, excitoxicity, since voltage-gated

calcium channels then will remain closed and the Mg  block of NMDA receptors becomes

favored (Rodríguez et al., 2012).

Finally, pre- and probiotics seem to differ widely in their impact on the brain, which

highlights the importance of strain choice. Lactobacillus plantarum is one of the most

studied strains and seems potent in modulating brain serotonin with beneficial effects on

both cognition and behavior. On the other hand, Enterococcus faecium lowered brain

serotonin levels in density-stressed goslings. This effect was also observed in two prebiotics

trials in the hippocampus of pigs, and the prefrontal cortex of mice. The largest limitation

for most included strains is the lack of replication studies, as well as the inconsistency in

study endpoints. Some studies focus on enzymes and receptors, while others focus

exclusively on serotonin and its metabolite levels. Another variation can be found in the

targeted region for measurements: some were done in whole brains, several others in only a

few regions. On the whole, the mentioned limitations make it difficult to draw final

conclusions, apart from the general observation that diet, FMT, pre- and probiotics, as well

as bacterial strain choice seem intrinsically linked with serotonergic changes, irrespective of

the direction of change (increase or decrease) and measured analyte (whether whole levels,

or, receptors, enzymes or transporters).

4.3. Meanings of the above findings for possible clinical applications

The implications of the discussed interventions for AD development remain to be

determined, since neither of the included trials similarly assessed (i) serotonin levels both

in gut and brain (or associated biofluid), (ii) entry route (e.g. pre-/probiotics, diet, FMT), and,

+

2+

2+

https://www.sciencedirect.com/topics/neuroscience/brainstem
https://www.sciencedirect.com/topics/neuroscience/raphe-nucleus
https://www.sciencedirect.com/topics/neuroscience/neuroprotective-agent
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/lactobacillus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enterococcus-faecium
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gosling
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bacterial-strain


(iii) cognitive and/or behavioral outcome in involved (iv) AD mouse models or patients at

(v) different disease stages. Furthermore, it should be kept in mind that everyone has their

own individual microbiota composition, which is likely to impact their personal response to

FMT, diet, pre- and probiotics. This is not represented in the included FMT trials, since

effects on the brain’s serotonergic system were measured in subjects that underwent

antibiotic treatment prior to FMT. Consequently, it remains unclear whether the microbiota

from the transfer could colonize the gut sufficiently, and, consequently, alter gut-brain

communication in actual humans with their own initial microbiota composition. In clinical

studies with FMT transfers from healthy subjects to (irritable bowel disorder or depressive)

patients, psychiatric symptoms did improve, however, this benefit lasted only for about

three to six months (Chinna Meyyappan et al., 2020). Noteworthy, one case study observed

rapid improvement of cognitive and behavioral symptoms following FMT in an AD patient

that suffered from an infection with Clostridioides difficile. Stool from the patient’s 85-year-

old wife as a donor was used. The improvement was noticeable up to six months post-

intervention (no further data provided) (Hazan, 2020). The same question about

effectiveness in humans could be raised for the pre- and probiotic trials, especially since

several included trials used gnotobiotic or germ-free mice. Meanwhile, a randomized

controlled trial that investigates the effect of Bifidobacterium (three months

administration) on microbiota composition, brain networks and cognition in individuals

with amnestic MCI is ongoing (NCT03991195), next to an alike trial in which both

Bifidobacterium and Lactobacillus strains will be supplemented to AD patients for 12 weeks

(NCT05145881). Brain serotonin measurements are unfortunately not part of the outcome

measures in neither studies. Finally, external factors in preclinical studies should also be

vigorously investigated and controlled for before actual translation to the human situation,

since SSRI treatment efficacy, for instance, has been hypothesized to be largely dependent

on environmental influences, with even a chance of significant worsening rather than

improvement if under stressful living conditions (Alboni et al., 2017, Severino et al., 2018). In

this context, one proposed mechanism might be the enhanced neuronal plasticity following

increased serotonergic neurotransmission, rendering the individual more susceptible to the

quality of the living environment.

4.4. Limitations and reflections

Some methodological limitations and reflections need to be considered firstly. For instance,

the narrow focus of the review, which is mostly on serotonin only. Metabolites and

precursors related to its synthesis and metabolization pathways, such as melatonin,

tryptophan, and, the neuroinflammatory kynurenine pathway (e.g. quinolinic and kynurenic

acid), are beyond the scope of this review. Their importance should certainly not be
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underestimated and can be placed in a general conceptual framework of neuroinflammation

in AD (for review: Gheorghe et al., 2019; Maitre et al., 2020). Another important aspect to

take into account, is the fact that the observed correlations between altered brain serotonin

content and improved clinical outcome and/or attenuated AD pathology, for instance,

following SSRI treatment, do not necessarily imply causality. The same goes for the observed

serotonergic effects in brain of the enumerated preclinical studies researching pre- and

probiotics, FMT, and, whole diet approaches/dietary restrictions. Given that the serotonergic

neurotransmitter system both in gut and brain may serve as an intermediate nexus for

neighboring and alike neurotransmitter systems, such effects may be rather indirect. It

remains to be evidenced still whether serotonin degeneration may be a downstream effect

of AD pathology or may have a causative role after all. SSRI treatment does not

unequivocally interfere in the progression of human AD, perhaps because of complex effects

of chronic SSRI treatment on multiple serotonin receptor subtypes (

Gründer and Cumming, 2021). The discrepancy between animal studies with a successful

outcome and the lack of replication in clinical trials is often witnessed in that regard. It is,

therefore, a difficult enterprise to attribute a causal link for serotonin systems, however, a

handful of studies so far have emerged, revealing modifying effects via direct structural and

molecular interactions between serotonin and Aβ. A final limitation might be the exclusion

of studies that measured serotonin levels, receptors, enzymes or transporters solely in gut

and/or blood. These endpoints are often used in human trials due to more expensive, and,

perhaps, somewhat more invasive in vivo brain measurements (e.g. PET scans). Although

these do not necessarily provide relevant information on brain serotonin content and

alterations, such studies certainly could contribute to the overall understanding of serotonin

across the microbiota-gut-brain axis. As for imaging studies, these are very much wanted in

view of our proposed hypothesis, however, these should be executed with suitable

radioligands, and, preferentially, in combination with peripheral analyses of serotonin

synthesis or metabolism.

5. Conclusions and general considerations

All in all, current reviewed evidence suggests that the brain’s serotonergic neurotransmitter

system is intrinsically involved in the development of AD. Additionally, this system could be

modulated through the microbiota-gut-brain axis, using pre- and probiotics, FMT and

nutrition, at least as evidenced in various preclinical studies. A next step would be executing

randomized placebo-controlled trials focused on pre- and probiotics, FMT and diet, in actual

AD mouse models, at different ages of the disease pathology. In this regard, transgenic

mouse models that cover at least both the tau and Aβ abnormalities should be preferred

(such as APP/PS1/TauP301L transgenic mice). Study endpoints should ideally cover cognitive

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/preclinical-study
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/receptor-subtype
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aspects, neuropsychiatric symptoms (such as depression and aggression), and, central

(brain) as well as peripheral (CSF; blood; gut (biopt or fecal materials)) measurements of

serotonin levels, receptors, enzymes (IDO, MAO, TPH2, TPH1) and/or transporter

expressions. A distinction could be made between neurochemically and behaviorally

important brain regions, such as the hippocampus, brainstem, amygdala and frontal cortex.

Functional metagenomics approaches using fecal materials to further identify how bacterial

metabolites might (in)directly affect serotonergic signaling remain a very powerful tool in

this effort (Jameson et al., 2020). Next, largescale human randomized placebo-controlled

intervention trials are required to determine in which stage of the Alzheimer’s continuum

these modulators (e.g. pre-/probiotics; FMT; diet) of the serotonergic system might have the

most promising effect, preferably spanning from the prodromal stages, such as subjective

cognitive decline or MCI due to AD, up to the milder AD stages, where both high adherence

to such therapies, as well as sufficient room for noticeable enhancement are feasible still. In

the end, such trials might facilitate the development of a comprehensive approach to tackle

this complex multifactorial disease, since serotonin and its derivatives across the

microbiota-gut-brain axis might serve as potential biomarkers of disease progression (

Tajeddinn et al., 2016), next to forming a valuable target in AD prevention strategy and drug

development.
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