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Melatonin’s neuroprotective role in mitochondria
and its potential as a biomarker in aging, cognition
and psychiatric disorders
Lindsay M. Melhuish Beaupre1,2, Gregory M. Brown 1,3, Vanessa F. Gonçalves1,2,3 and James L. Kennedy 1,2,3

Abstract
Melatonin is an ancient molecule that is evident in high concentrations in various tissues throughout the body. It can
be separated into two pools; one of which is synthesized by the pineal and can be found in blood, and the second by
various tissues and is present in these tissues. Pineal melatonin levels display a circadian rhythm while tissue melatonin
does not. For decades now, melatonin has been implicated in promoting and maintaining sleep. More recently,
evidence indicates that it also plays an important role in neuroprotection. The beginning of our review will summarize
this literature. As an amphiphilic, pleiotropic indoleamine, melatonin has both direct actions and receptor-mediated
effects. For example, melatonin has established effects as an antioxidant and free radical scavenger both in vitro and in
animal models. This is also evident in melatonin’s prominent role in mitochondria, which is reviewed in the next
section. Melatonin is synthesized in, taken up by, and concentrated in mitochondria, the powerhouse of the cell.
Mitochondria are also the major source of reactive oxygen species as a byproduct of mitochondrial oxidative
metabolism. The final section of our review summarizes melatonin’s potential role in aging and psychiatric disorders.
Pineal and tissue melatonin levels both decline with age. Pineal melatonin declines in individuals suffering from
psychiatric disorders. Melatonin’s ability to act as a neuroprotectant opens new avenues of exploration for the
molecule as it may be a potential treatment for cases with neurodegenerative disease.

Introduction
Melatonin is a pleiotropic indoleamine that is amphi-

philic so that it can readily cross from blood or cerebral
spinal fluid (CSF) into tissues and cells, as well as through
the blood–brain barrier.
For years now, circulating melatonin has been well-

known to promote sleep, maintain sleep, reset the circadian
clock, and entrain free-running circadian rhythms1–7.
However, melatonin and its derivatives are now recognized
to also have very potent effects as free radical scavengers
and antioxidants8. Melatonin is present very widely in body

tissues and in almost all of them the synthesizing enzymes
arylalkylamine N-acetyltransferase (AANAT) and acet-
ylserotonin O-methyltransferase (ASMT) have been
found9. Because mitochondria are the powerhouse of the
body, synthesizing ATP via oxidative phosphorylation, the
presence of melatonin was sought and found in the orga-
nelle10. In fact, mitochondria from rodent maternal oocytes
can synthesize melatonin from serotonin, which is con-
sistent with the fact that mitochondria are maternally
derived11,12. Thus, this powerful antioxidant has a sig-
nificant protective presence in the body’s major source of
free radicals13–15.
We aim to provide a brief overview of melatonin and its

neuroprotective role, with an emphasis on mitochondrial
melatonin. Due to the plethora of evidence implicating
mitochondria in the aging process, as well as psychiatric
disorders16, we will provide a succinct discussion of
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melatonin’s potential role as a factor and marker of aging
and psychiatric disorders to close off this review.

History and overview of melatonin
Melatonin is an ancient molecule, found in bacteria,

plants, and molds17. In various species, before any hint of
a hormonal role it had a local regulatory function18. In
reptiles and birds, it was present in several locations
including the eyes. The third parietal eye which served as
a sensor for the presence of light was one of those eyes
containing melatonin19.
There is evidence that the primitive third eye evolved

into the pineal gland in mammals20. It remained linked to
the light-sensing system by a neural link but then passes
that information on by the neuroendocrine signal, mela-
tonin. In body tissues, it is found in high concentrations in
numerous tissues including the harderian gland, retina,
hypothalamus, liver, colon, the entire gastrointestinal
tract, and immune system9,19,21–25. These two systems,
hormonal and tissue are separate pools. It has been
known since 1980 that gastrointestinal tissue levels are
independent of blood levels; pinealectomy does not lower
tissue levels, but abolishes virtually all blood levels23,26.
One pool is synthesized in the pineal, the other is present
in virtually every body tissue9,27–29. The pool of tissue
melatonin is far greater (10–400×) than that derived from
the pineal gland26,30,31.
Pineal melatonin levels in plasma and serum display a

circadian (about 24 h) rhythm in which levels are van-
ishingly low during the day and increase during the dark
period, peaking around 2–4 a.m. before dropping
again32–34. Synthesis and secretion of melatonin are
controlled by the suprachiasmatic nucleus (SCN), the
master clock of the body. The SCN contains a set of genes
that interact in a self-contained transcription–translation
negative feedback loop with a loosely 24-h cycle35,36.
Lesioning the SCN eliminates endogenous melatonin
rhythmicity and produces an inability for exogenous
melatonin to resynchronize the system37,38. This rhythm
is synchronized with the light–dark (LD) cycle through
input from the retina via the retinohypothalamic tract,
which arises from a tiny set of innately photosensitive
ganglion cells (IPGCs). These IPGCs contain the photo-
pigment melanopsin, which is particularly sensitive to
light in the blue spectrum. These neurons convey infor-
mation on the LD cycle to the SCN, to regions that reg-
ulate pupillary responses as well as to sleep and waking
systems39. Projection to the pineal is multi-synaptic
initially to the autonomic section of the hypothalamic
paraventricular nucleus, then leading to a projection to
the upper thoracic intermediolateral cell column. From
there, preganglionic sympathetic noradrenergic fibers
travel to the superior cervical ganglion that sends post-
ganglionic fibers to the pineal gland, thus initiating

melatonin synthesis. There is an extremely rapid response
in AANAT to produce N-acetylserotonin, increasing
10–100-fold during night-time40. That substance is then
converted to melatonin by the enzyme ASMT [formerly
called hydroxyindole O-methyl transferase (HIOMT)]41.
Melatonin is not stored, being secreted directly into the
blood stream where it is largely bound to albumen.
Melatonin measurement in CSF shows that content in the
third ventricle is not only higher than in the lateral ven-
tricle but also higher than in plasma, indicating that there
is direct entry from the pineal to CSF and not just from
the blood in the choroid plexus is probable42,43.
Two G1-protein linked melatonin receptors MT1, and

MT2 are known44,45. Like other G1-protein-linked
receptors (GPCR), they frequently become associated as
dimers; the heterodimer MT1/MT2 is as frequent as the
homodimer of MT1, while the homodimer of MT2 is
almost 4-fold less common. A third receptor, GPR-50, has
a sequence that is 45% related but will not bind melatonin.
However, it will form heterodimers with MT1 that abolish
binding and may therefore be functionally significant. Yet
a fourth related mammalian melatonin binding site has
been found. It has nanomolar rather than picomolar
affinity for melatonin and has now been characterized as
the analog of quinone reductase type 2 in hamster kid-
ney46. Both MT1 and MT2 receptors are present in the
SCN. MT1 inhibits firing, while both may cause phase
shifting and differentially regulate GABAA function47,48.
Both MT1 and MT2 receptors are widely distributed in
the brain and appear to have differential functions in rapid
eye movement (REM) versus non-REM sleep, anxiety, and
vigilance49–53. Both receptors are also found in many
other parts of the body and have been shown to mediate/
activate some of melatonin’s neuroprotective effects54,55.

Melatonin and neuroprotection
There is ample evidence to support melatonin’s role in

neuroprotection. The concept was first established by Tan
et al. (1993)56 who discovered its ability to scavenge for
free radicals, more specifically, hydroxyl radicals in vitro56.
The concept of melatonin being able to scavenge for free
radicals was further shown both in vitro and using animal
models57,58. In fact, animal studies have found that mel-
atonin is effective in scavenging free radicals during both
postischemic reperfusion and after head trauma59,60. It
should be noted that the time of melatonin administration
is critical when treating head trauma. Melatonin only
reduces malondialdehyde, a marker of oxidative stress,
when melatonin was administered within the first two
hours post-trauma. If given 8 h or even 48 h after the
injury has occurred, then melatonin only increases mal-
ondialdehyde levels, though the reason why remains
unclear60,61. Interestingly, Zang et al. (1998)62 were unable
to replicate the results with hydroxyl radicals. They
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postulate that this negative finding was because all
experiments performed were in the presence of hydrogen
peroxide, for which melatonin is a dose-dependent sca-
venger62. However, increasing melatonin levels causes
greater scavenger capabilities62.
Serum melatonin also has been shown to exhibit an

antioxidant capacity, and accordingly, the peak in anti-
oxidant capacity is dependent on the surge in melatonin63.
Antioxidant capacity may also have important implica-
tions for neurocognition in those with depressive dis-
order64–66.
Melatonin can also be found throughout the immune

system and is now known to also be an immune mod-
ulator, one with a double action67. On the one hand, it
boosts immunity against foreign invasion while on the
other hand it modulates tissue responses, down-
regulating proinflammatory and up-regulating anti-
inflammatory cytokines. Melatonin has been shown to
improve morbidity and mortality both in sepsis in ani-
mals and in children68. It has also been shown to have a
very large safety margin and in animals, the adminis-
tration has never been fatal when given orally or sub-
cutaneously, hence the LD50 has been stated to be
infinity68,69.
In a recent comprehensive review, it was pointed out

melatonin acts both through receptor-dependent and
independent pathways to protect against neurodegen-
eration55. For example, agomelatine, a non-specific
MT1/2 receptor agonist is used to treat major depres-
sive disorder (MDD), and it also improves sleep patterns
and normalizes circadian rhythms54,70,71. In addition,
administration of melatonin to MT1/2 knock-out mice
following a brain perfusion (to induce focal cerebral
ischemia) led to some neuroprotection, as measured by
the reduction of infarct volume72. Melatonin receptors
may also play a vital role in protecting against neuro-
degeneration. In the human SH-SY5Y cell line (that has
protein expression similar to that of Alzheimer’s dis-
ease), it was shown that melatonin administration
inhibited β-secretase β-site APP-cleaving enzyme 1
(BACE1) and Prensenilin 1 (PS1) expression while
increasing a disintegrin and metalloproteinase 10
(ADAM10), each of which is involved in the formation of
Alzheimer-related amyloid β-peptides. All alterations
found in BACE1, PS1, and ADAM10 were receptor-
mediated; administration of a G protein inhibitor before
the melatonin treatment abolished the effects of mela-
tonin. This highlights the importance of the melatonin
receptors in inhibiting neurodegeneration via the acti-
vation of melatonin73. However, there is an abundance of
receptor-mediated neuroprotective effects that are
amply reviewed recently elsewhere (please see refs. 74,75)
so the remainder of the review will be focused on
mitochondrial-mediated actions.

Melatonin and mitochondria
Importantly, melatonin displays neuroprotective effects

on mitochondria via its free radical scavenging cap-
abilities. For example, it has been shown that the
administration of melatonin protects against mitochon-
drial DNA (mtDNA) damage that is potentially induced
by ROS76. Administration of melatonin to a pregnant
mother rat also increases the activity of glutathione (GSH)
peroxidase, an antioxidant marker, in fetal brains77.
Mitochondria found in the brain and liver contain high
amounts of melatonin23,78. Martin et al. (2000)79 found
that a 100 nanomolar dose of melatonin given to mito-
chondrial membranes from rat brain and liver produces
intramitochondrial levels that are 100 times greater than
the levels in plasma. Given mitochondria’s role in the
production of ROS, it makes sense that the highest con-
centration of melatonin would be in the mitochondria, the
site of mitochondrial oxidative metabolism. This means
that the greatest amount of ROS and oxidative stress
occurs at a site where melatonin is highest, and thus is in
an ideal position to act as a scavenger of these free
radicals23.
It has been hypothesized that the high levels of mela-

tonin in mitochondria can be attributed to (1) oligopep-
tide transporters (PEPT1/2) and/or (2) mitochondria
synthesize their own melatonin78. In fact, a recent study
found that two enzymes involved in melatonin synthesis,
AANAT and ASMT were present in brain mitochon-
dria10,12,13,80. However, it is also important to note that
the melatonin levels in mitochondria do seem to reach a
saturation point23. If melatonin can reach saturation, does
that mean its free radical scavenging activity can also
reach a maximum? To the best of our knowledge, this has
yet to be investigated.
In addition to its antioxidant activity, melatonin pro-

motes activities of antioxidant enzymes and reduces pro-
oxidant enzymes78. One example of an antioxidant
enzyme is GSH whose synthesis is stimulated by mela-
tonin81. The activity of the antioxidant enzyme, super-
oxide dismutase 2 (SOD2) is upregulated by melatonin
through the promotion of the activity of sirtuin 3 (SIRT3)
which deacetylates SOD2, thus activating it82,83. It should
be noted that the half-life of highly reactive ROS is very,
very short (e.g. for –OH, 10−9 s) so that they travel
extremely short distances before oxidizing adjacent
molecules81. Thus, the juxtaposition of antioxidants and
scavengers with the site of ROS production in mito-
chondria, as is the case for melatonin and its secondary
effects, is essential for them to be highly effective.
Melatonin’s effects on mitochondria can be directly

mediated via the MT1/2 receptors. For example, treating
rats with agomelatine after a cerebral ischemia, led to
reduced ROS production in the brain, greater antioxidant
properties, and less neuronal apoptosis because of an
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increase in nuclear factor erythroid 2-related factor 2
(NRF2)84. Melatonin activates NRF2, which is considered
a defense mechanism against ROS as it controls the
expression of a collection of genes involved in antioxidant
defenses and inflammatory responses85–88. Melatonin
treatment prevents apoptosis and mitochondrial damage
caused by hydrogen-peroxide in retinal pigmented epi-
thelial cells via the activation of melatonin through the
MT1 receptor89. Remarkably, it has also been shown that
the melatonin receptor MT1 is present on mitochondrial
outer membranes and that melatonin acts on that
receptor to inhibit stress-mediated cytochrome C release,
thereby highlighting another neuroprotective property of
melatonin10.

Melatonin levels as a potential biomarker?
Unfortunately, melatonin levels do not remain constant

throughout life or may become altered. This is seen
during aging and in individuals with psychiatric dis-
orders90–92. These will be discussed below.

Aging and age-related cognitive decline
A substantial literature has demonstrated that melato-

nin levels are known to decline with age92–96. The puta-
tive effects attributed to these changes may therefore be
related to changes in either pool of melatonin97,98. Urin-
ary analyses found, on average, individuals between 20
and 39 years old excrete about 12 micrograms of 6-
sulphatoxymelatonin (6SMT), the primary metabolite of
melatonin, and that this steadily declined to about 6 μg in
some individuals over 8094. In fact, it has been found that
daytime melatonin levels in CSF drop by about half
between the ages of 15 and 5092. Looking across the entire
life span, nocturnal serum melatonin levels appear low
during the first 6 months of life, then they peak at 1–3
years of age. By 15–20 years old individuals already
experience, on average, an 80% decline in melatonin levels
and this decline continues into old age (70–90 years)95.
Younger individuals also experience their peak melatonin
secretion later in sleep than older individuals99,100. Per-
haps this is because melatonin secretion is correlated with
the participants’ habitual bedtimes, which is later for
younger adults99. Another study found that nocturnal
serum melatonin levels are significantly different between
individuals <60 and those over 60 years of age, when
multiple samples are drawn throughout the night. When
only one sample was looked at (2:00 a.m.), the differences
were abolished96. Daytime serum levels also display mixed
results. One study found that daytime serum levels display
a negative correlation with age but another study was
unable to replicate this finding93,96.
There are also instances where the correlation between

melatonin levels and aging was not seen at all. Zeitzer
et al. (1999)101 postulate that their negative findings in

plasma were because both their younger and older par-
ticipants underwent extensive medical examining and
were free of diagnoses, medications, nicotine, alcohol,
and caffeine, steps that were not documented by other
studies. The study by Zeitzer et al. (1999)101 also only
included individuals between the ages of 18 and 81,
whereas most of the other studies included individuals
outside of that age range93,94,96. One thing to note about
all of this research is that melatonin levels vary person-
to-person and all of these studies utilize a cross-sectional
design102–105. This person-to-person variation may be
partially explained by genetics106.
Animal studies have also found that age-related changes

are not only in melatonin derived from the pineal but also
in tissue melatonin. Decreased mRNA activity of AANAT
and ASMT were found in situ107. Decreased AANAT
mRNA levels were evident in the spleen and liver of 12-
month-old rats (compared to 3-month-old rats) while
decreased ASMT levels were present in the spleen only.
Increased mRNA expression levels of both enzymes were
found in the heart. Moreover, increased AANAT enzyme
activity was found in the liver and kidney which the
authors suggest may be a compensatory mechanism107.
According to the Free Radical Theory of Aging pro-

posed by Harman, free radical reactions produce free
radicals, such as ROS, which contribute to the aging
process via oxidative changes including damage to nuclear
DNA and mtDNA108. mtDNA is three times more sus-
ceptible to oxidative stress which can lead to mitochon-
drial dysfunction and apoptosis109. This is because
mtDNA lacks histones and due to its proximity to the
electron transport chain110. Antioxidants such as mela-
tonin and others found in mitochondria (e.g. GSH per-
oxidase) are defenses that have been developed over time
to either directly scavenge the free radicals or indirectly
metabolize them or their intermediates to neutralize
them, thus preventing the deleterious effects they may
cause110–113. Although other factors, such as mitochon-
drial transcription factor A may also be important15.
Unfortunately, aging also leads to a decline in total anti-
oxidant capacity in parallel with melatonin decline63.
Another frequent consequence of aging is cognitive

decline. This decline in cognition has been linked to both
an increase in oxidative stress and a decrease in pineal
melatonin levels. For example, a recent study found
decreased levels of GSH at baseline, which is indicative of
greater oxidative stress and a decline in executive func-
tioning over 4 years114. In another study, individuals with
dementia experienced a flattening in the circadian curve
of plasma melatonin levels compared to mentally healthy
individuals of the same age115. Furthermore, the nocturnal
plasma melatonin peak was significantly associated with
cognitive impairment, as determined by the Mini Mental
State Examination116. There are also reported differences
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in salivary melatonin levels. Waller et al. (2016)117 sepa-
rated individuals based on their Draft board intelligence
scores; individuals who scored remarkedly high were
classified as the cognitively high-functioning group, and
those who scored low were classified as the cognitively
impaired group. Using saliva samples that were collected
over a 24-h period, they noticed that the median noc-
turnal melatonin response at 4 a.m. was significantly lower
in the cognitively impaired group. However, there were no
significant differences at any other time point117. The
question then becomes: would exogenous melatonin be of
benefit? Although the question cannot be answered
directly, we do have some insight from animal models. For
example, mice exposed to formaldehyde suffer from
cognitive impairments and experience an increase in
oxidative stress, as noted by higher levels of ROS, 50%
reduction in GSH, and decreased endogenous melatonin.
However, melatonin treatment was able to ameliorate the
reduction in GSH, restore melatonin levels and improve
cognitive functioning118. Taken together, this evidence
supports a decline in melatonin and an increase in oxi-
dative stress during cognitive decline, independent of age.
It also suggests that exogenous melatonin may be bene-
ficial in combatting these changes but further research
into this matter is warranted. In a more recent study,
melatonin and nicotinamide mononucleotide (NMN)
separately or together reversed age-related cognitive
impairments and reduced the mitochondrial ROS pro-
duced in the prefrontal cortex and hippocampus of aging
rats119. NMN is the precursor to nicotinamide adenine
dinucleotide, which plays a pivotal role in OXPHOS.
Overall, the literature suggests that the relationship
between reduced melatonin and increased oxidative stress
is a complex one that requires further study.

Psychiatric disorders
This section reviews the literature on pineal melatonin.

To the best of our knowledge, there have been no studies
on tissue melatonin levels in any psychiatric disorder as
of yet.

Major depressive disorder
For decades, decreased nocturnal melatonin levels have

been reported in both serum and plasma, implying lower
nocturnal secretion in MDD individuals120–123. There is,
however, inconsistency in morning levels as one study
found they, too, were decreased while a second study
found they were actually increased in MDD indivi-
duals121,124. In healthy individuals, reduced nocturnal
melatonin levels have been linked to poorer sleep quality,
including REM sleep alterations125. Interestingly, these
altered sleep patterns are also present in MDD patients126.
No alterations in melatonin levels in the CSF have been
identified in MDD patients2124.

Schizophrenia
Several studies, including a recent meta-analysis have

reported that individuals with schizophrenia have
decreased nocturnal melatonin in both serum and plasma,
regardless of whether they were on psychotropic treat-
ment127–131. The decrease in mean serum levels is
apparent throughout the entire 24 h128. When comparing
levels pre-effective and post-effective antipsychotic treat-
ment, antipsychotics did not alter nocturnal melatonin
secretion129. To note, three of four positive studies only
included individuals with chronic schizophrenia. The one
study that included both individuals with chronic schi-
zophrenia and those who had just started experiencing
psychotic symptoms found that the group whose symp-
toms had just started had increased nocturnal melatonin
secretion compared to the individuals who were chroni-
cally ill127. The fourth study, by Afonso et al. (2011)132,
which had negative findings, did not state whether the
group of individuals with schizophrenia was suffering
from chronic schizophrenia. Furthermore, Ferrier et al.
(1982)127 pointed out that bodyweight also plays a role in
melatonin secretion. In fact, when body weight was used
as a covariate, the difference in melatonin levels between
the cases and controls became insignificant127. Interest-
ingly, when comparing the nocturnal plasma levels
between individuals with schizophrenia and MDD, it was
found that the levels in MDD are lower than those seen in
schizophrenia130. There were no differences in the levels
of melatonin in CSF133. Given melatonin’s role in sleep
and the altered sleep patterns experienced by up to 78% of
individuals with schizophrenia, melatonin research in the
context of schizophrenia may be critical125,134.

Bipolar disorder (BD)
Early studies on plasma melatonin concentrations in BD

patients suggested that there were no alterations135.
However, preliminary evidence now suggests decreased
serum melatonin levels among BD patients at all time
points within a 24-h time period. When studied in dif-
ferent mood states, a significant decrease in melatonin
levels of BD individuals in their depressed state was
reported compared to healthy controls at 1 a.m. (peak
melatonin onset) and in the early morning. Melatonin
levels were only decreased in euthymic patients compared
to healthy controls at 1 a.m. but no changes were found
when comparing manic patients and healthy controls. No
alterations in urinary melatonin levels were noted based
on levels of 6SMT either136. More recent studies confirm
decreased evening melatonin levels in saliva and CSF, but
studies were unable to replicate the results in blood124,137.
In fact, melatonin secretion in saliva was almost two times
lower during habitual sleep onset in adolescents and
young adults with BD compared to MDD137. The
decreased melatonin levels may, in part, be explained by
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increased levels of interleukin-6, a pro-inflammatory
cytokine, which induces monoamine oxidase A, which
leads to an increase in the breakdown of serotonin, a
precursor of melatonin138,139.
Although it cannot be said with certainty, one potential

explanation for the decreases in melatonin among the
three psychiatric disorders discussed could be genetic
differences. More specifically, the genetics of melatonin
synthesis. Two genes of importance are AANAT and
ASMT, which encode enzymes responsible for converting
serotonin into melatonin. Soria et al. (2010)140 identified
two markers of AANAT, rs3760138 and rs4238969, both
of which have allele and genotype (dominant model)
frequency distribution differences between depressed
patients (including unipolar and bipolar individuals) and
healthy controls. Three haplotypes were also identified,
two of which were protective against depression and one
that was a susceptibility haplotype140. In other studies,
markers of ASMT have also been linked to depression
such as the ‘AA’ genotype of rs4446909 and the ‘GG’
genotype of rs5989681 being protective genotypes in two
samples of individuals of Polish descent141,142. The study
also reported differential mRNA expression levels in
blood for ASMT, such that depression cases who had a ‘G’
allele for rs4446909 or a ‘G’ allele for rs5989681 had
decreased mRNA expression levels141. In BD, there were
allelic differences identified between cases and controls
for markers of ASMT (‘G’ of rs4446909, ‘G’ of rs5989681,
and ‘A’ of rs56690322) although only the finding for
rs4446909 remained significant in an independent repli-
cation sample. A protective haplotype using the three

markers already mentioned and rs6644635 was also
identified. Individuals with the ‘GG’ genotype of
rs4446909 showed lower enzymatic activity and mRNA
levels143.
At this point, it is not clear what studies of tissue

melatonin might reveal in these groups of patients and we
can only speculate on their potential clinical significance.
However, it would be expected that alterations of mela-
tonin synthetic genes would affect both known pools of
melatonin in a similar fashion.

Conclusion
There is no doubt that melatonin is an extremely ver-

satile indoleamine, with the various roles and functions it
has in the body. In addition to its well-known role as a
hormone, a plethora of evidence has been put forth in
support of its role as a neuroprotectant, immune mod-
ulator, and even as an antioxidant for the brain and body.
We have provided a brief overview of some of these stu-
dies. For simplicity, we have created a diagram (Fig. 1) to
summarize the neuroprotective properties of melatonin
reviewed in this paper. The neuroprotective effects mel-
atonin displays are similar between the receptor-
independent and dependent pathways. Both pathways
can promote antioxidant defenses, have free radical
scavenging capabilities, and are able to protect mito-
chondria. Melatonin administration can also elicit its
effects in a receptor-independent or dependent manner.
Moreover, because of this newer role discovered for
melatonin, it is important to investigate the implications it
may have as a biomarker under different circumstances.

Fig. 1 Overview of melatonin receptor-independent and receptor-dependent neuroprotective effects. Melatonin administration can elicit
receptor-independent and dependent effects. Melatonin promotes anti-oxidant defenses and free-radical scavenging throughout the body. The
relatively high levels of melatonin within mitochondria have the important benefit of enhanced protection against mtDNA damage and prevention
of apoptosis.
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Based on the vast amount of literature, decreased pineal
and tissue melatonin appears to be a biomarker of aging.
A reduction in pineal melatonin also appears to be a
biomarker of psychiatric disorders, at least the three dis-
cussed in this review (MDD, schizophrenia, and BD) and
may indicate the presence of neurodegenerative processes
analogous to aging144.
Of concern for psychiatry, diagnostic criteria at present

lump together patients in categories with varying patho-
logical features. Subtyping these disorders should be done
to take pathophysiological systems including melatonin
into account in order to refine and tailor treatment. There
are at least three causes of decreased melatonin: altera-
tions in key melatonin synthetic genes as noted above;
lessened availability of serotonin due to increased stress
and proinflammatory cytokines that direct tryptophan
down the kynurenine pathway and increases in light
exposure during normal sleeping times65. These could
reduce the neuroprotection seen in some patients. To
avoid damaging degeneration, melatonin could be given
as a treatment to restore neuroprotection.
As such, we recommend that future studies examine

variations in genes involved in melatonin synthesis (for
example ASMT), particularly in relation to the appear-
ance of cognitive deficits in these psychiatric popula-
tions140–143. In addition, a measure of overnight 6SMT
levels could also be relevant to estimate total body noc-
turnal melatonin via both its production and disposal.
This can be accomplished by obtaining the first-morning
sample of urine and determining the 6SMT level and
normalizing it to the concentration of creatinine. Fur-
thermore, treatment trials could readily be done on those
with reduced melatonin with the aim of attempting to
prevent deterioration of neuroprotection.
Finally, melatonin levels in mitochondria are about

100× higher than the levels found in the blood. When
melatonin, and subsequently its protective actions are
lacking, oxidative damage is remarkably high79. Therefore,
the field should invest more effort in this powerful role of
melatonin in controlling oxidative metabolism by exam-
ining, for example, the correlation between the levels of
melatonin’s metabolites and markers for mitochondrial
dysfunction or oxidative stress145.
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