
Go to:

Go to:

Magnesium in Alzheimer’s disease
Dehau Chui, Zheng Chen, Jia Yu, Honglin Zhang, Weishan Wang, Yuetao Song, Huan Yang; Liang
Zhou.

Abstract

Alzheimer’s disease (AD) is the most common form of dementia. It is characterized by a
progressive cognitive impairment clinically, and excessive deposits of aggregated amyloid-
β (Aβ) peptides pathologically. Environmental factors, including nutrition and metal
elements, are implicated in the pathophysiology of AD. Magnesium (Mg) affects many
biochemical mechanisms vital for neuronal properties and synaptic plasticity, including the
response of N-methyl D-aspartate (NMDA) receptors to excitatory amino acids, stability
and viscosity of the cell membrane, and antagonism of calcium. Mg levels were found to be
decreased in various tissues of AD patients and negatively correlated with clinical
deterioration. Moreover, Mg was demonstrated to modulate the trafficking and processing
of amyloid-β precursor protein, which plays a central role in the pathogenesis of AD. Here,
we review in vitro and in vivo data that indicated a role for magnesium in many biological
and clinical aspects of AD.

Alzheimer’s disease

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease in elderly
people, affecting approximate 6-8% of all individuals over the age of 65 years. AD is
characterized by progressive cognitive impairment and distinct neuropathological lesions in
the brain, including intracellular neurofibrillary tangles, and extracellular, parenchymal and
cerebrovascular senile plaques (Braak and Braak, 1991). Senile plaques are mainly
constituted of a 39–42 amino acid peptide, amyloid-β protein (Aβ) (Glenner and Wong,
1984; Masters et al., 1985), which is generally accepted as being neurotoxic and playing a
central role in the pathogenesis of neuronal dysfunction and synaptic failure in Alzheimer's
disease (Selkoe, 1991; Hardy and Selkoe, 2002). Aβ is derived from full-length amyloid-β
precursor protein (APP) (Kang et al., 1987; Qi-Takahara et al., 2005), which is a type I
trans-membrane protein composed of a large extracellular domain, a short transmembrane
domain, and a cytoplasmic tail, by sequential proteolytic cleavages by β-secretase and γ-
secretase. The β-cleavage of APP, catalysed by the well characterized transmembrane
aspartyl protease β-site APP-cleaving enzyme (BACE) (Hussain et al., 1999; Sinha et
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al., 1999; Yan et al., 1999; Haniu et al., 2000), cleaves APP at the NH2- terminus of the Aβ
sequence (Seubert et al., 1993) to generates a soluble version of APP (sAPP) and a 99-
residue COOH-terminal fragment (CTFβ or C99) which remains membrane bound.

C99 is further cleaved to release Aβ of varying lengths, predominantly Aβ40 and Aβ42
(Selkoe, 2001; Hussain et al., 1999; Price et al., 1998; Sinha et al., 1999; Christensen et
al., 2004), by an atypical aspartyl protease, γ-secretase complex which contains at least four
different proteins, namely Aph-1, nicastrin, presenilin, and Pen-2 (De Strooper,
2003; Edbauer et al., 2003). Proteolysis by γ-secretase is heterogeneous; most of the full-
length Aβ species produced is a 40- residue peptide (Aβ40), whereas a small proportion is a
42-residue COOH-terminal variant (Aβ42) (Esler and Wolfe, 2001). However, prior
processing of APP by α-secretase precludes the formation of the neurotoxic Aβ. It cuts APP
within the Aβ region (between residues Lys16 and Leu17 of Aβ), generating a sAPPα and a
membrane- anchored 83-residue C-terminal fragment (CTFα or C83), which is also a
substrate of γ-secretase (Esch et al., 1990; Sisodia, 1992). α-Secretase is thought to be a
metalloprotease, such as TNF-α converting enzyme (TACE) or a disintegrin and
metalloprotease 10 (ADAM10) (Lammich et al., 1999). Secreted APP exerts proliferative
actions in a variety of cell types as well as neurotropic and neuroprotective effects
(Mucke et al., 1996).

Synaptic failure in AD is caused by accumulation and oligomerization of Aβ42 in limbic
and association cortices (Selkoe, 2002). Mutations in the APP gene or presenilin (PS) 1 or 2
genes, which cause an autosomal dominant early onset familial AD (<5% of AD patients),
increases the relative production of Aβ42 (Wiltfang et al., 2001). In the majority of patients
with so-called sporadic late-onset AD, an age-dependent accumulation of Aβ, caused by
disturbed dynamic balance between anabolic and catabolic activities, has been implicated
(Selkoe, 1999; 2001b). Also, environmental factors, such as metallic elements may play a
protective or disruptive role in the pathogenesis of AD (for review, see Adlard and Bush,
2006; Shcherbatykh and Carpenter, 2007). Different metals may be involved in multiple
aspects of the disease process, such as the regulation of APP gene expression and mRNA
translation, the proteolytic processing of APP, the aggregation and degradation of Aβ, and
the formation of neuro- fibrillary tangles. Heavy metals (e.g. lead, mercury and cadmium)
are neurotoxic and associated with intellectual impairment (Bleecker et al., 2005). Recent
studies have implicated lead exposure in the subsequent elevation of APP and Aβ in
animals (Basha et al., 2005b) as well as in the aggregation of synthetic Aβ  in vitro
(Basha et al., 2005a). In the case of aluminium, another “toxic” metal, its relevance to AD
is ascribed to the involvement in the formation of paired helical filaments (PHF), the
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aggregation and toxicity of Aβ, and the generation of oxidative species (for review,
see Gupta et al., 2005). Transition metals (e.g. copper, zinc, and iron, which are essential in
cell biology) can induce Aβ aggregation (Huang et al., 2004; Mantyh et al., 1993) and are
found concentrated in and around the amyloid plaques in the AD brain (Lovell et al., 1998).
Disturbed homeostasis of these biometals in the AD brain (decreased copper levels, and
increased concen- trations of iron, zinc, and manganese) has been reported (Cornett et
al., 1998; Deibel et al., 1996). An imbalance of zinc and copper has been shown to
significantly alter APP processing and Aβ generation in relevant animal models (Bayer et
al., 2003; Borchardt et al., 1999; Phinney et al., 2003; Sparks and Schreurs, 2003; Lee et
al., 2002; Friedlich et al., 2004).

Neurological function of magnesium

The magnesium ion, Mg , is the second most abundant intracellular cation, serving to
stabilize nucleic acid and protein structure (Subirana et al., 2003; Brion and Westhof,
1997), and regulating over 300 enzymes as a cofactor (Romani et al., 1992; 1993; Zhao et
al., 2002), including ATP- related enzymatic reactions (Hirata et al., 2002; Ko et al., 1999).
Physiological concentrations of Mg are essential for synaptic conduction, and required for
normal functioning of the nervous system. It has various effects at different concentrations
on intellectual and neuronal functions via many bio-chemical mechanisms, including
NMDA-receptor responses to excitatory amino acids and calcium influx (Nowak et
al., 1984; Mayer et al., 1984; Vandenberg et al., 1987; Matsuda et al., 1987), inhibition of
calcium channels (Iseri and French, 1984) and glutamate release (Lin et al., 2002), effects
on cell membrane fluidity and stability (Ebel and Gunther, 1980), and toxic effects of
calcium (Alvarez-Leefmans et al., 1987). These mechanisms have important roles in
chronic neuronal degeneration and subsequent development of dementia.

The role of Mg in degenerative diseases has been the focus of increased attention in recent
years. Continuous low Mg intake for two generations induces exclusive loss of
dopaminergic neurons in rats (Oyanagi, 2005), and may support the Mg hypothesis in the
pathogenesis of parkinsonism- dementia complex (PDC) of Guam. Mg supple- mentation
prevents the loss of dopaminergic neurons and ameliorates neurite pathology in a PD
model, indicating a role of Mg in protection of dopaminergic neurons in the substantia
nigra from degeneration (Oyanagi et al., 2006; Hashimoto et al., 2008). Also, Mg at
concentrations > 0.75 mM inhibits the aggregation of α-synuclein, induced either
spontaneously or by incubation with iron (Golts et al., 2002). Microinjection of magnesium
into cells caused microtubule disassembly (Prescott et al., 1988). Mg  and
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Ca  effectively induced formation of approximately 340 kD aggregates of paired helical
filament tau (PHF-tau) obtained from corticobasal degeneration (CBD) and AD but not
normal tau proteins isolated from fetal and adult brains, as determined by sodium dodecyl
sulphate (SDS)-polyacrylamide gel electrophoresis and immunoblotting (Yang et al., 1999).
This finding suggests regional elevation of these ions may trigger pathological deposition
of PHF-tau in certain neurodegenerative disorders.

Magnesium in AD

Recent evidence suggests that Mg was implicated in the pathogenesis of AD. Mg levels
were decreased in the serum and brain tissues of AD patients in clinical, experimental and
autopsy studies (Durlach, 1990; Glick, 1990a; Lemke, 1995; Andrási et
al., 2000; 2005; Vural et al., 2010). Moreover, serum Mg levels in AD patients negatively
correlated with the Global Deterioration Scale (GDS) and the Clinical Dementia Rating
(CDR) (Cilliler et al., 2007). A causal relationship between low Mg in hippocampal
neurons and impairment of learning was also demonstrated in aged rats (Landfield et
al., 1984). Magnesium deficiency can lead to specific impairments in emotional memory
(Bardgett et al., 2005; Bardgett et al., 2007), while magnesium therapy facilitates cognitive
function recovery following brain injury; however, there are task and dose- dependent
aspects to this recovery (Enomoto et al., 2005; Hoane, 2005; Hoane, 2007). Increasing
brain magnesium leads to the enhancement of both short-term synaptic facilitation and
long- term potentiation and improves learning and memory functions in rats (Slutsky et
al., 2010). Interestingly, treatment of dementia patients with nutritional Mg support
efficiently improved memory and other symptoms (Glick et al., 1990b). However,
therapeutic administration of Mg is still controversial regarding the treatment of AD, and
high doses of Mg may have potential detrimental side effects (Clark and Brown,
1992; Fung et al., 1995; Hallak, 1998; Ladner and Lee, 1999).

Neuronal degeneration occurs in PS1 mutant mice without extracellular Aβ deposits,
suggesting it is caused by the accumulation of intracellular Aβ42 (Chui et al., 1999).
Deposits of intracellular Aβ42 are correlated with apoptotic cell death in AD brains (Chui et
al., 2001). The Aβ is derived from APP through sequential cleavages by β-and γ-secretases,
whose enzymatic activities are tightly controlled by subcellular localization. Thus,
delineation of how the intracellular trafficking of these secretases and APP are regulated is
important for understanding AD pathogenesis. Although APP trafficking is regulated by
multiple factors including PS1 (Cai et al., 2003), a major component of the γ-secretase
complex, and phospholipase D1, a phospholipid- modifying enzyme, APP can reciprocally
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regulate PS1 trafficking. APP deficiency results in faster transport of PS1 from the trans-
Golgi network to the cell surface and increased steady state levels of PS1 at the cell surface,
which can be reversed by restoring APP levels (Liu et al., 2009). However, it is not known
whether altered magnesium level may also affect APP trafficking or/and processing.
Recently, it has been demonstrated that magnesium modulated APP processing in a time-
and dose-dependent manner: extracellular magnesium ([Mg ] ) at high doses increased
CTFα level and sAPPα release. In contrast, [Mg ]  at low doses enhanced CTFβ
accumulation and Aβ secretion (Yu et al., 2010). The mechanism of how varying
magnesium concentrations led to shifts between α- and β-secretase cleavage of APP might
be partially explained by the evidence that [Mg ]  at high doses promoted retention of
APP on plasma membrane, whereas [Mg ]  at low doses reduced cell surface APP level
(Yu et al., 2010). All APP family members are predominantly cleaved in the late secretory
pathway, including the plasma membrane and endosomes (Yamazaki et al., 1996). Further,
different secretase activities show distinct subcellular localization, namely α- secretase at
the plasma membrane (Lammich et al., 1999; Skovronsky et al., 2000) and β/γ- secretases
within endocytic compartments (Vassar et al., 1999; Huse et al., 2000 ; Cupers et
al., 2001 ; Kaether et al., 2002; Ray et al., 1999). Because targeting of APP to distinct
subcellular compartments determines processing into amyloidogenic or non-amyloidogenic
products, much attention has been focused on factors that regulate APP trafficking.
Interestingly, several adaptor proteins are known to influence APP transport and processing.
For example, F- spondin, a secreted factor that binds to the extracellular domain of APP
(Ho and Sudhof, 2004), has been shown to increase levels of cell surface APP, promote α-
cleavage of APP, and decrease β-cleavage of APP (Hoe et al., 2005). Similarly, the
extracellular matrix protein Reelin caused increased surface APP and a preference for α-
cleavage over β-cleavage (Hoe et al., 2006b). These findings suggest that trafficking and
proteolysis of APP are regulated together. Thus a function of [Mg ]  in APP transport
from/to the cell surface might be a possible explanation for its modulation of APP
processing. In the light of Mg  as an antagonist of the NMDA receptor, our finding is
corroborated by the previous report that chronic NMDA receptor activation decreased α-
secretase-mediated APP processing and increased Aβ production in cultured cortical
neurons (Lesne et al., 2005). Furthermore, several lines of evidence suggest that APP
metabolism and Aβ levels are closely correlated with neural activity in animals (Fazeli et
al., 1994; Turner et al., 2004; Cirrito et al., 2005; 2008) and humans (Buckner et al., 2005).
It has been demonstrated that decreasing neuronal activity by high [Mg ]  (10 mM
MgCl ) resulted in significant reduction of Aβ secretion, which may involve a change in
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APP processing (Kamenetz et al., 2003). However, the precise functional mechanism of
how magnesium regulates APP transport and whether magnesium interacts with α- and β-
secretase, or regulates enzyme activity, or their subcellular localization, remains
undetermined but will be part of our future analysis.

The dose dependent response of sAPPα to increasing [Mg ]  implies high concentrations
of Mg may exert protective effects against AD. Various studies have strongly established
that secreted sAPPα possesses potent neurotrophic and neuroprotective activities against
excitotoxic and oxidative insults (Mattson et al., 1993; Schubert et al., 1993), p53-mediated
apoptosis (Xu et al., 1999), and the proapoptotic action of mutant PS1 by activating the
transcription factor NF-κB (Guo et al., 1998). Moreover, sAPPα stimulates neurite
outgrowth (Small et al., 1994), regulates synaptogenesis (Morimoto et al., 1998), exerts
trophic effects on cerebral neurons in culture (Araki et al., 1991), stabilizes neuronal
calcium homeostasis and protects hippocampal and cortical neurons against the toxic
effects of glutamate and Aβ peptides (Furukawa et al., 1996). It also has been shown that
intra- cerebroventricular administration of secreted forms of sAPPα to amnestic mice has
potent memory-enhancing effects and blocks learning deficits induced by scopolamine
(Meziane et al., 1998).

Secreted Aβ increased upon low [Mg ]  (0.0 and 0.4 mM) compared with physiological
concen- tration of Mg (i.e. 0.8 mM), whereas high [Mg ]  (1.2, 1.6, 4.0 mM) could not
significantly lower total extracellular Aβ level (Yu et al., 2010). The data are consistent
with several reports showing a dissociation between sAPPα release and Aβ generation both
in vitro or in vivo (Loefler and Huber, 1993; Querfurth et al., 1994; Dyrks et
al., 1994; LeBlanc et al., 1998; Rossner et al., 2000), suggesting that there might be a more
complex regulatory mechanism of these two processing events of APP. For instance,
constitutive activation of PKC in guinea pig brain increased sAPPα secretion without any
effect on secreted Aβ (Rossner et al., 2000), suggesting that the α- and β-secretase
pathways may be differentially controlled. Because Yu et al., (2010) examined the effects
of Mg only on the pathologically high production of Aβ, the modulation of the
physiological Aβ production by Mg needs to be established in future studies. The steady-
state level of Aβ peptide is determined by the rate of production from APP via β- and γ-
secretases and degradation by the activity of several degradative enzymes, including
neprilysin (Hama et al., 2001; Iwata et al., 2001; Shirotani et al., 2001; Leissring et
al., 2003; Marr et al., 2004; review see Wang et al., 2006), insulin degrading enzyme (IDE)
(Kurochkin et al., 1994; Farris et al., 2003), endothelin-converting enzyme (Eckman et
al., 2003) and MMPs (Roher et al., 1994; Backstrom et al., 1996; Leissring et al., 2003).
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Yu et al., (unpublished data) also found that Mg deprivation resulted in a 50% decrease of
neprilysin activity without alteration in the protein level of neprilysin and IDE. Thus, the
exacerbated accumulation of Aβ induced by [Mg ]  at 0.0 mM resulted from both the
enhanced production and aberrant catabolism.

Conclusion

Magnesium participates in the biochemical mechanisms of neuronal properties and synaptic
functions, which are involved in the patho- physiology of neurodegenerative diseases.

Magnesium was demonstrated to modulate APP trafficking and processing, and its level
was found decreased in AD patients. Both clinical and experimental data implicated a role
of Mg in the pathogenesis of AD. Given the prevalence of magnesium inadequacy in the
general population (Ford and Mokdad, 2003), magnesium supplementation could constitute
a potential novel pharmacological target for the treatment of AD via its action on APP
processing.
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