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Abstract
Increased oxidative stress and mitochondrial dysfunction have been identified as common
pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's
disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). As the age-related decline
in the production of melatonin may contribute to increased levels of oxidative stress in the elderly,
the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple
actions as a regulator of antioxidant and prooxidant enzymes, radical scavenger and antagonist of
mitochondrial radical formation. The ability of melatonin and its kynuramine metabolites to interact
directly with the electron transport chain by increasing the electron flow and reducing electron
leakage are unique features by which melatonin is able to increase the survival of neurons under
enhanced oxidative stress. Moreover, antifibrillogenic actions have been demonstrated in vitro, also
in the presence of profibrillogenic apoE4 or apoE3, and in vivo, in a transgenic mouse model.
Amyloid-β toxicity is antagonized by melatonin and one of its kynuramine metabolites. Cytoskeletal
disorganization and protein hyperphosphorylation, as induced in several cell-line models, have been
attenuated by melatonin, effects comprising stress kinase downregulation and extending to
neurotrophin expression. Various experimental models of AD, PD and HD indicate the usefulness
of melatonin in antagonizing disease progression and/or mitigating some of the symptoms.
Melatonin secretion has been found to be altered in AD and PD. Attempts to compensate for age-
and disease-dependent melatonin deficiency have shown that administration of this compound can
improve sleep efficiency in AD and PD and, to some extent, cognitive function in AD patients.
Exogenous melatonin has also been reported to alleviate behavioral symptoms such as sundowning.
Taken together, these findings suggest that melatonin, its analogues and kynuric metabolites may
have potential value in prevention and treatment of AD and other neurodegenerative disorders.
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Introduction
Oxidative damage has been suggested to be the primary
cause of aging and age-associated neurodegenerative dis-
eases like Alzheimer's disease (AD), Parkinson's disease
(PD), and Huntington's disease (HD). This concept is
based on the free radical hypothesis of aging as proposed
by Harman [1]. Many reviews on AD present compelling
evidence for a decisive participation of severe oxidative
stress in the development of neuropathology seen in this
disease [2-9]. Immunohistochemical proof that enhanced
oxidative stress and damage to biomolecules are hall-
marks of the disease and its progression was first pre-
sented by Pappolla et al. [3]. This study confirmed
findings demonstrating increased levels of lipid peroxida-
tion in vitro observed in autopsy samples of brains
afflicted by AD [10]. Because of its high rate of oxygen
consumption and its high content of polyunsaturated
fatty acids, the brain exhibits increased vulnerability to
oxidative stress. Elevated lipid peroxidation, as found in
the brains of AD patients, not only reveals oxidative stress
[10-13], but also exerts secondary effects on protein mod-
ification, oxidation and conformation [14,15]. Increased
protein and DNA oxidation also occurs in AD. Measure-
ments of protein carbonyl, 3,3'-dityrosine and 3-nitroty-
rosine in post mortem brain samples from AD patients have
shown increased oxidative and nitrosative protein modifi-
cation in the hippocampal and neocortical regions, but
not in the cerebellum [14,16-18]. Free radical attack on
DNA results in strand breaks, DNA-protein cross linkage,
and base modification. Double- and single-strand breaks
were elevated in AD cortex and hippocampus, but this has
to be largely attributed to apoptotic fragmentation
[19,20]. Enhanced oxidative DNA modification is, how-
ever, also demonstrable, mostly as 8-hydroxy-2'-deoxy-
guanosine (8-OHdG) [21-23], a product primarily
formed by attack of hydroxyl radicals [24], but other mod-
ified bases such as 8-OH-adenine have also been demon-
strated [25]. Augmented free radical damage to lipids,
proteins and nucleic acids has been reported for the sub-
stantia nigra of parkinsonian patients [26]. Therefore,
numerous compounds with antioxidant properties have
been suggested for treatment of AD and other neurode-
generative diseases [27-30]. Among these substances,
melatonin is unique for several reasons: it is a natural
compound synthesized in the pineal gland and other
body tissues; it can be released by the pineal gland via the
pineal recess into the cerebrospinal fluid (CSF), in much
higher concentrations than into the circulation [31,32]; its
production decreases with the advancement of age, a fact
which has been suggested to be one of the major causes of
age-associated neurodegenerative diseases [8,9,33,34].
This review focuses on the role of melatonin in the etiol-
ogy of AD and other neurodegenerative disorders and on
the therapeutic potential of melatonin in these patholo-
gies, including effects on sleep and behavior.

Melatonin: sources, dynamics and signaling
Melatonin is a methoxyindole secreted mainly, but not
exclusively by the pineal gland. Once formed melatonin is
not stored within the pineal gland but diffuses out into
the capillary blood [35] and CSF [31]. Melatonin arrives
early in the CSF of the third ventricle as compared to that
of the lateral ventricles. Levels of melatonin released to
the CSF were found to be 5 to 10 (up to 30) times higher
than those simultaneously measured in the blood [31],
whereas spinal CSF values did not much deviate from
those in the serum. These findings indicate uptake of
melatonin by the brain tissue, perhaps also metaboliza-
tion to other compounds, such as substituted
kynuramines, which are thought to display protective
properties. Brain tissue may have higher melatonin levels
than other tissues in the body [32].

It must be noted that the levels of a relatively lipophilic
substance like melatonin reaching neurons under physio-
logical or pharmacological conditions can differ consider-
ably from circulating hormone concentrations. In early
studies using high-pressure liquid chromatography [36]
or radioimmunoassay [37,38], hypothalamic melatonin
concentrations were found to be about 50 times greater
than in plasma. Two compartments of melatonin have
been proposed to exist, which differentially affect physio-
logical functions: in the plasma, melatonin would mainly
act on peripheral organs, whereas, in the CSF, it might
affect neurally mediated functions at a much higher con-
centration. Evidence interpreted as supporting this view
has been presented in a study demonstrating that mela-
tonin levels in the CSF of the third ventricle were 20-fold
higher than nocturnal plasma concentrations [39]. There-
fore, it seems necessary to distinguish strictly between
melatonin concentrations in the circulation and in tissues
[40,41].

While tissue melatonin sometimes shows only moderate
circadian amplitudes [40-42], circulating melatonin
exhibits one of the most pronounced circadian rhythms
known, at least prior to aging. The peak concentration
occurs at night and is higher in younger age (18–54 yrs).
With some exceptions [43,44], a strong decline of mela-
tonin during aging has been consistently reported by
many investigators [45-51].

The age-associated decline in melatonin production and
the flattening of the melatonin rhythm may be major con-
tributing factors to the increased levels of oxidative stress
and associated degenerative changes seen at old age. How-
ever, individuals of the same chronological age can
exhibit considerable deviations in the degree of senes-
cence-associated functional impairment. Some discrepan-
cies between findings of different investigators can be
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attributed to the interindividual variation in melatonin
levels of the same age group [8].

It is the physiological age of an individual rather than the
chronological age that determines one's melatonin pro-
duction. The varying extent of degenerative changes of
cells and tissues may correspond to differences of mela-
tonin production in the body [8].

Melatonin is involved in the control of various physiolog-
ical functions such as coordination of other circadian
rhythms including that of the central pacemaker, the
suprachiasmatic nucleus (SCN) [52-55], sleep regulation
[56,57], immune function [58,59], growth inhibition of
malignant cells [60], blood pressure regulation [61,62],
retinal functions [63-65], modulation of mood and
behavior [66-68], free radical scavenging and other anti-
oxidant actions [40,41,69-71]. Many effects of melatonin,
especially those concerning the circadian pacemaker sys-
tem, are mediated by the Gi-protein (alternately G0 or Gq)
coupled membrane receptors MT1 and MT2 [72-74]. Addi-
tional binding sites exist. A previously assumed mem-
brane receptor MT3 was shown to represent an enzyme,
quinone reductase 2 [75], which may participate in anti-
oxidative protection through elimination of prooxidant
quinones [40,76].

Other effects may be related to nuclear receptors of lower
ligand sensitivity, RORα, which exists in at least four vari-
ants, and RZRβ [77,78], but in these cases functional sig-
nificance and target genes are less clear. Effects on the
immune system have been partially attributed to these
nuclear binding sites, but membrane receptors are obvi-
ously also involved [55,59]. To which extent the upregu-
lation of antioxidant enzymes depends on nuclear
receptors deserves clarification in detail. γ-Glutamyl-
cysteine synthase, the rate-limiting enzyme of glutathione
biosynthesis, is stimulated by melatonin at the transcrip-
tional level; EMSA (electrophoretic mobility shift analy-
ses) data have shown melatonin-dependent rises in DNA
binding not only of AP-1, but also of RZRβ/RORα [79].

Further effects of melatonin do not require any of these
membrane and nuclear receptors, since the indoleamine
is able to directly bind to calmodulin [80], thereby inhib-
iting CaM-kinase II, and, moreover, to cause activation
and Ca2+-dependent membrane translocation of protein
kinase C [81], at concentrations in the nanomolar range,
at a near-physiological level. Since these effects are related
to the long-known cytoskeletal changes induced by mela-
tonin, they may become of interest with regard to the
abnormalities in cytoskeletal architecture and phosphor-
ylation of cytoskeleton-associated proteins in AD. This
aspect may be of higher relevance than obvious at first
glance. Since cytoskeletal alterations, as observed in AD as

well as tau hyperphosphorylation and related upregula-
tions in the MAP kinase pathway, can be mimicked by the
protein phosphatase inhibitor okadaic acid [82-85], the
counteraction by melatonin of okadaic acid-induced AD-
like lesions seems to indicate a common level of action
[86,87]. Interestingly, okadaic acid also caused oxidative
stress, which was again antagonized by melatonin [88], in
an MT1-receptor-independent fashion [89].

The relationship between melatonin and Ca2+ and, thus,
with the activity state of the cell may be more profound
than previously thought. The indoleamine was also found
to bind, with a physiologically relevant Kd of about 1 nM,
to calreticulin, a Ca2+-binding protein not only present in
the endoplasmic reticulum, but also in the nucleus [90].
These findings may turn out to be relevant with regard to
the involvement of Ca2+ overload in overexcited neurons
and cell death in neurodegenerative processes.

Concerning the antioxidative protection against amyloid-
β, agonists of the MT1 and MT2 membrane receptors with-
out antioxidant properties were not effective in neuroblas-
toma cells and primary hippocampal neurons, so that the
neuroprotective and antiamyloidogenic properties of
melatonin appeared to be independent of these receptors
[91].

Melatonin and Alzheimer's disease
AD is an age-associated neurodegenerative disease that is
characterized by a progressive loss of cognitive function,
loss of memory, and other neurobehavioral manifesta-
tions. In spite of a large number of studies undertaken, the
etiology of AD is largely unknown. Many mechanisms
have been proposed, including genetic predispositions
(e.g., expression levels and subforms of presenilins and
ApoE), inflammatory processes associated with cytokine
release, oxidative stress, and neurotoxicity by metal ions
[92-99]. Pathological manifestations of AD include extra-
cellular plaques of β-amyloid and intracellular neurofi-
brillary tangles composed of abnormally bundled
cytoskeletal fibers. The deposition of amyloid plaques is
thought to destabilize neurons by mechanisms which
require further clarification. Tangles are associated with
hyperphosphorylation of tau, a microtubule-associated
protein, and of neurofilament H/M subunits, processes
that lead to misfolding and accumulation of these pro-
teins, along with a disruption of microtubules
[94,98,100-103]. With regard to oxidative stress, prooxi-
dant properties of the free amyloid-β molecule (Aβ) may
be decisive, which is Fenton-reactive due to bound cop-
per, and can, therefore, lead to hydroxyl radical-induced
cell death. Additionally, Aβ initiates flavoenzyme-
dependent rises in intracellular H2O2 and lipid peroxides,
which also cause radical generation [27,104,105]. Rises in
Aβ protein have, in fact, been shown to induce oxidative
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stress [106]. Moreover, an impairment of neurotrophin
activity on associated tyrosine kinase receptors has been
suggested to represent an important factor in AD pathol-
ogy [107-110].

With regard to the involvement of oxidative stress in AD,
melatonin represents an interesting agent, since it displays
multiple properties by which oxidative stress is antago-
nized [33,40,41]. In addition, other actions of melatonin
exceed this aspect, but seem to have a beneficial potential
in AD, too, as will be discussed in detail.

Accumulation of aggregated Aβ and tau hyperphosphor-
ylation are highly common phenomena observed during
aging of primates and other mammals [111]. Though Aβ
contributes directly or indirectly to neuronal degenera-
tion, the potential of amyloid to cause AD depends on the
individual's susceptibility to Aβ-mediated toxicity [28]. In
AD brains, oxidative end products are found to be signifi-
cantly elevated. Metabolites of lipid peroxidation and oxi-
datively modified proteins and DNA are abundantly
present in post mortem brain samples of AD patients
[5,10,112,113]. Inflammatory reactions associated with
microglia and generation of nitric oxide (NO)-derived
radicals contribute to cell stress and seem to be important
especially in the degeneration of proximal neurons [114].
Nevertheless, the inflammatory component in AD is
clearly different from normal inflammation, since some
classical hallmarks such as neutrophil infiltration and
edema are usually absent, whereas other characteristics
including acute-phase proteins and cytokines can be iden-
tified [17].

It seems important to distinguish between the extra- and
intracellular sources of oxidants. Extracellular attack of
neurons by oxidants may result either from inflammatory
responses or from free radicals formed by Fenton-reactive
Aβ molecules [27]. Intracellular oxidative stress seems to
be indirectly caused by Aβ, effects that may involve recep-
tors or other surface molecules able to transduce oxido-
toxicity [115-118]. Recently AD has been related to
mitochondrial dysfunction [87,119]. This conclusion is
based on several lines of evidence. First, cells depleted of
mitochondrial DNA become insensitive to Aβ toxicity
[120]. Second, cybrid cells (cytoplasmic hybrid cells:
mitochondrial DNA-depleted recipients of mitochondria
from other sources) containing mitochondria from AD
patients have shown enhanced vulnerability to Aβ [121].
Third, cybrids with mitochondria from sporadic AD,
which is associated with lower cytochrome c oxidase activ-
ity, due to a defective gene [122-126], exhibit various
other signs of mitochondrial dysfunction, such as dis-
turbed Ca2+ homeostasis [122] and Na+/Ca2+ exchange
[127], enhanced formation of reactive oxygen species
[122,128,129], lowered mitochondrial membrane poten-

tial [130] and, sometimes, abnormal morphology
[125,131].

These abnormalities may now be seen under aspects rem-
iniscent of other mitochondrial diseases associated with
pathological oxidant formation [cf. ref. [132]], since sim-
ilar changes are also present in PD, HD and Friedreich's
ataxia, and sometimes already demonstrated in respective
cybrid models [124,128,131]. Collectively, all evidence
convincingly demonstrates that the neural tissue of AD
patients is subjected to increased oxidative stress. There-
fore, its attenuation or prevention should be the goal of a
strategic treatment of this neurodegenerative disease.
However, a simplistic concept aiming to reduce oxidative
damage and its consequences by applying classical radical
scavengers is obviously insufficient. Vitamins E and C
have been used for the treatment of AD patients with only
limited success. Although several studies demonstrated a
reduction in lipid peroxidation [133,134], epidemiologi-
cal data showed only minor or no clear-cut effects [135-
138]. Moreover, these compounds remained relatively
inefficient in preventing Aβ toxicity and fibrillogenesis
[139-141].

In this regard, melatonin and other structurally related
indolic compounds, such as indole-3-propionic acid,
proved to be more potent [28,140,142-144]. This may not
only be a matter of radical-scavenging capacity, but also
involve additional effects of these compounds and, per-
haps, their metabolites. In particular, antifibrillogenic
effects were observed in vitro [140,144], but also in vivo in
transgenic mouse models [145,146]. Moreover, protec-
tion from Aβ toxicity was observed, especially at the mito-
chondrial level [91,143]. For these reasons, melatonin
appears as an antioxidant of superior potency, with addi-
tional effects relevant to intervention in AD.

Multiple antioxidant actions of melatonin in the brain: 
implications for neuroprotection
As pointed out, antioxidative protection is not limited to
radical scavenging and must be seen in a broader context
involving many different mechanisms. Melatonin exerts
several actions which collectively contribute to the pre-
vention of oxidative damage assuring survival of cells even
under adverse conditions. We shall, therefore, analyze in
detail the different sources of oxidative stress and damage
which allow for a broad spectrum of different counterac-
tions by melatonin and a specific response to this antioxi-
dant and adaptogenic agent. It should be kept in mind
that coincidence does not indicate causality: Oxidative
damage may sometimes be the consequence rather than
the cause of the pathology observed in neurodegenerative
disorders, with the mechanisms of protection exerted by
melatonin often being quite complex and even interde-
pendent. Neuroprotective effects induced by melatonin
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may act in concert to reduce oxidative stress and damage.
Since it is not easily possible to distinguish between direct
and indirect antioxidant actions mediated by melatonin,
it is of utmost importance not to arrive at preliminary con-
clusions, which do not reflect the complexity of the mul-
tiple responses to this highly potent neuroprotective
agent.

For several reasons, the central nervous system (CNS)
exhibits a relatively high susceptibility to oxidative stress.
As mentioned, one of these is a high oxygen consumption
rate that inevitably accounts for increased generation of
free radicals. Moreover, the brain is relatively rich in poly-
unsaturated fatty acids, a property which is not unfavora-
ble per se, but which can become problematic under
oxidative stress; especially docosahexaenoic acid is easily
peroxidized, and this process has been discussed in rela-
tion to neurodegenerative diseases including AD [5,147-
149]. Lipid peroxidation was found to initiate secondarily
oxidative protein modifications, particularly in the AD
brain [14]. Numerous publications have demonstrated
that lipid peroxidation can be suppressed by melatonin,
and much of this work has been carried out in the CNS
[33,71,150]. Fewer data are available with direct relevance
to AD. Melatonin did not only antagonize tau hyperphos-
phorylation induced by the PI3 kinase inhibitor wort-
mannin, but also a wortmannin-dependent stimulation
of lipid peroxidation [151]. Again, such findings shed
light on the complexity of actions. While suppression of
lipid peroxidation may be seen, at first glance, solely as an
effect of an antioxidant, perhaps only by radical scaveng-
ing, the relationship to altered protein kinase activities
reveals the involvement of additional actions in the
metabolism.

Another aspect of vulnerability of the CNS is related to the
availability of other, enzymatic and low molecular weight
antioxidants. Antioxidant enzymes usually attain only
moderate activities in the brain, but are in any case not
that low as sometimes incorrectly stated (especially with
regard to catalase). Among low molecular weight antioxi-
dants, glutathione levels are comparable to those of other
tissues, but ascorbate is usually by one order of magnitude
higher than in the circulation. This basically protective
scavenger turns into an extremely unfavorable and prooxi-
dant agent in the presence of elevated iron concentrations,
since the reductant is driving a Fenton reaction-based
redox cycling. Iron levels are high in certain brain areas
and, in addition, damage to the brain tissue, ischemia or
neurotrauma can further mobilize iron so that radical-
dependent destruction of biomolecules and cell death are
strongly enhanced [152]. Counteractions by melatonin
against damage by Fenton reagents have been repeatedly
demonstrated [153-155].

These effects are related to the remarkable efficacy of
melatonin to scavenge various free-radicals, in particular,
the extremely reactive hydroxyl radical [69,156-159]. This
property, which has been repeatedly reviewed
[33,40,41,160-162], extends also to carbonate radicals
(CO3•-) [163], reactive nitrogen species and to actions of
metabolites of melatonin, such as cyclic 3-hydroxymela-
tonin, N1-acetyl-N2-formyl-5-methoxykynuramine
(AFMK) and N1-acetyl-5-methoxykynuramine (AMK)
[40,164-168]. Carbonate radicals, which have been
shown to interact with both melatonin and AMK, abstract
electrons (melatonyl cation radicals formed by CO3•-

were demonstrated) or alternately, hydrogen atoms. •NO
exhibits nitrosation reactions with melatonin, AFMK and
AMK, whereas peroxynitrite-derived radicals, such as
•NO2 and •OH (from ONOOH) or •NO2 and CO3•-

(from ONOOCO2 
-) lead to nitration of these molecules.

Another poorly understood, but possibly important field
is that of interactions with other antioxidants. In both
chemical and cell-free systems, melatonin was shown to
potentiate the effects of ascorbate, Trolox (a tocopherol
analog), reduced glutathione, or NADH, in a non-additive
and synergistic manner [158,165,169,170]. These find-
ings indicate multiple interactions, via redox-based regen-
eration of antioxidants transiently consumed. Also in vivo,
under conditions of long-lasting experimental oxidative
stress, melatonin was shown to prevent decreases in ascor-
bate and α-tocopherol levels [171]. It would be important
to know whether this effect, to date only shown in the
liver, may be demonstrable in the CNS, too.

Contrary to classical antioxidants, melatonin exerts sev-
eral additional effects, which contribute either directly or
indirectly to the decrease of free radicals, and some of
these actions are particularly relevant to or specific for the
brain. Antioxidant enzymes were repeatedly shown to be
upregulated by melatonin. While activities or gene expres-
sion of enzymes like Cu,Zn- and Mn-superoxide dis-
mutases and hemoperoxidase/catalase were stimulated by
melatonin in a highly variable, tissue-specific fashion and
usually only moderately in the CNS [40,41], glutathione
peroxidase was consistently and considerably upregulated
in the brain [40,41,160,172,173]. Glutathione reductase
was usually found to rise after glutathione peroxidase,
perhaps reflecting a secondary control by GSSG [40,174-
177][178]. Additional stimulations of glucose-6-phos-
phate dehydrogenase [176] and γ-glutamylcysteine syn-
thase [79,161,177] indirectly support the action of
glutathione peroxidase by providing reducing equivalents
(NADPH) for the action of glutathione reductase and by
increasing the rate of glutathione synthesis, respectively.
In addition, melatonin downregulates prooxidant
enzymes such as lipoxygenases [161,177] and NO syn-
thases [40,41,76,161,176,177,179-185]. In this way, oxi-
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dative and nitrosative damage is attenuated, not only by
avoiding peroxynitrite-derived radicals, but also by reduc-
ing NO-dependent neuronal excitation, and by antago-
nizing inflammatory reactions. The antiinflammatory
potential of melatonin extends to downregulation of
cyclooxygenase 2, an effect which may represent an action
of the metabolite AMK [40,186], a substance which is
additionally a cyclooxygenase inhibitor much more
potent than acetylsalicylic acid [187]. Signaling mecha-
nisms of AMK, in terms of receptors and interactions of
transcription factors with the cyclooxygenase-2 promoter,
have not been investigated to date.

Especially in the brain, melatonin contributes indirectly
to the avoidance of radical formation, owing to several
actions which are frequently overlooked, but which may
be highly relevant in practice. First, melatonin is known to
exert pronounced antiexcitatory and antiexcitotoxic
effects, associated with inhibition of calcium influx and
NO release and, consequently, prevention of the
enhanced, excitation-dependent generation of free radi-
cals [40]. Melatonin was shown to possess strong anticon-
vulsant properties and to counteract efficiently the actions
of various excitotoxins [188]. When analyzed in detail,
neuroprotection by melatonin against excitotoxins turned
out to be a superposition of antiexcitatory and direct anti-
oxidant effects, as shown for glutamate and its agonists,
ibotenate, kainic acid, domoic acid, and, in particular,
also for quinolinic acid (summarized by Hardeland [40]).

Indirect antioxidative protection in terms of radical avoid-
ance may be also assumed for the chronobiological role of
melatonin as an endogenous regulator of rhythmic time
structures. The importance of appropriate timing for
maintaining low levels of oxidative damage has been
overlooked for quite some time. However, it turned out
that temporal perturbation as occurring in short-period or
arrhythmic circadian clock mutants leads to enhanced
oxidative damage [76]. This action may be particularly
important under the aspect of melatonin supplementa-
tion in the elderly, who exhibits a strongly reduced ampli-
tude in the circadian melatonin rhythm, and in the AD
patients in which the circadian system is disturbed.
Finally, radical avoidance under the influence of mela-
tonin is also a consequence of mitochondrial effects, as
exerted by the indoleamine and by its metabolite AMK.

Safeguarding of mitochondrial electron flux and 
metabolism by melatonin
With regard to the mitochondrial aspect of AD and other
neurodegenerative diseases – concerning radical genera-
tion, excitation-dependent calcium overload and its con-
sequences for the mitochondrial membrane potential and
for the permeability transition pore (mtPTP), involve-
ment in apoptosis and sensitivity towards excitotoxins

including Aβ- the actions of melatonin at the level of this
important cellular compartment deserve particular atten-
tion.

The electron transport chain (ETC) represents a major
source of reactive oxygen species (ROS) within the cell,
due to electron leakage towards molecular oxygen [189].
Complexes I and III of the ETC have been identified as the
two principal sites of superoxide anion (O2•-) generation
[190]. While much of the O2•- is released from complex III
to either side of the inner membrane [191], the iron-sulfur
cluster N2 of complex I appears to be the main site of O2•-

release to the matrix [190,192-194]. This seems to hold
also for the brain, at least, under normal conditions. The
fate of O2•- can be different. A certain proportion re-
donates electrons to the ETC at cytochrome c [195,196].
Another fraction is converted to H2O2 and O2 by the mito-
chondrial, manganese-containing subform of superoxide
dismutase (MnSOD) [197]. However, H2O2 produced by
cytosolic Cu,Zn-SOD can likewise enter mitochondria
owing to its high membrane permeability. A certain
amount of H2O2 is eliminated intramitochondrially by
interaction with cytochrome c [195,196], while another
fraction should be detoxified by peroxidases; though, the
destruction of this oxidant and potential source of
hydroxyl radicals is never complete. A third fraction of
O2•- combines with NO, having a similar affinity to this
oxygen radical as SODs, to give peroxynitrite, a source of
hydroxyl and carbonate radicals as well as NO2, in other
words, an additional origin of destruction and nitration of
proteins [198] or aromates [168,198].

Mitochondria are not only a major site of ROS generation,
but also the primary target of attack for ROS and reactive
nitrogen species (RNS) [199]. Damage to the mitochon-
drial respiratory chain can either cause breakdown of the
proton potential, opening of the mtPTP and, thus, induce
apoptosis or lead to further generation of free radicals
maintaining a vicious cycle, which ultimately also ends up
in cell death [189], either of the necrotic or apoptotic type
[200].

Findings of several investigators indicate that the neuro-
protective role of melatonin in AD and PD is primarily
due to mitochondrial effects. This is not only a matter of
radical scavenging (see above) – which may support pro-
tection, but can be only of limited efficacy for reasons of
stoichiometry – but also of additional actions exceeding
the direct elimination of free radicals. Some of these are
rather conventional, concerning protection of mitochon-
drial membranes and DNA from oxidative insults, stimu-
lation of glutathione (GSH) synthesis and support of the
reduction of oxidized glutathione (GSSG) [reviews: refs.
[40,41]]. Some others may be also regarded as indirect
antioxidant effects of melatonin, which are, however,
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based on the maintenance of mitochondrial electron flux,
something that is notably observed even under adverse
conditions [201-206].

Melatonin's mitochondrial actions are taking place within
the organelle. This statement is important since it strongly
contrasts with many other antioxidants. Melatonin, dis-
posing of a balanced amphiphilicity, crosses the cell
membranes with ease and may be able to concentrate
within subcellular compartments [207]. Mitochondrial
accumulation has been discussed [205], but this issue has
not yet been finally settled. Its amphiphilicity may allow
melatonin to act at or even within the membrane.
Whether effects on the fluidity of the mitochondrial inner
membrane [208] reflect such a property is uncertain, since
these experiments were performed under oxidative stress,
which leads to membrane rigidization. Moreover, [125I]-
iodomelatonin was shown to bind to mitochondrial
membranes [209]. It will be of future importance to study
directly the entrance, penetration and presence of mela-
tonin in mitochondrial inner membranes.

Effects of the indoleamine on electron flux seem to have,
at least, two aspects. Melatonin administration increased
the activities of mitochondrial respiratory complexes I
and IV in a time dependent manner in brain and liver
[204,205,210]. However, these results were obtained in
submitochondrial particles and, therefore, reflect activi-
ties of some more or less isolated proteins islets in the
membrane, but not natural electron flux. What they do
show is an improvement of electron transport capacity by
melatonin. This is the more remarkable as these effects
were also observed in aging and, especially, senescence-
accelerated mice [211-213]. Some studies of this type were
also accompanied by determinations of ATP
[204,205,210]. With due caution, which is necessary
because of the fact that a measured ATP concentration
does not necessarily reflect ATP production rates, these
results seem to indicate that also ATP formation is, in a
sense, safeguarded by melatonin. If relevant, such effects
should be also detectable at the level of the proton poten-
tial. In fact, processes perturbing the mitochondrial mem-
brane potential such as calcium overload, either due to
overexcitation, to protein misfolding or to damage by free
radicals, are antagonized by melatonin. In cardiomyo-
cytes, astrocytes and striatal neurons, melatonin pre-
vented calcium overload [214,215], counteracted the
collapse of the mitochondrial membrane potential
induced by H2O2 [214], doxorubicin [216] or oxygen/glu-
cose deprivation [215], and also inhibited the opening of
the mitochondrial permeability transition pore (mtPTP),
thereby rescuing cells from apoptosis. In addition to the
antioxidant actions, melatonin directly diminished
mtPTP currents, with an IC50 of 0.8 µM [215], a concentra-

tion that would require mitochondrial accumulation of
melatonin, as discussed above.

Such findings require explanations exceeding the conven-
tional antioxidant concept. In a recently proposed model
[40,76], single-electron exchange reactions of melatonin
are assumed to be the basis of interactions with the ETC,
at low, quasi-catalytic concentrations. Under this perspec-
tive, radical scavenging by melatonin is not the principal,
decisive property, but rather an indicator for melatonin's
capability of undergoing single-electron transfer reac-
tions. A cycle of electron donation to the ETC, e.g. at cyto-
chrome c, followed by electron acceptance at N2 of
complex I by the resulting cation radical was proposed.
This cycle may reduce electron leakage at N2, with the cat-
ion radical as a potent competitor of O2. Such a cycle
would enhance the net electron flux through ETC by
diminishing electron leakage, thus safeguarding the pro-
ton potential and ATP synthesis [40,41,76]. In fact, reduc-
tion of electron leakage by melatonin was stated in
neuroblastoma cells [217]. Moreover, similar properties
were assumed for the melatonin metabolite AMK
[40,41,76], which also easily undergoes single electron-
transfer reactions and which is sufficiently amphiphilic,
too [166,167]. Mitochondrial protection was, in fact,
demonstrated also for AMK [203].

Indole antioxidants such as melatonin and their kynuric
metabolites have multiple effects on oxygen and energy
metabolism in improving, supporting and maintaining
mitochondrial function and integrity [40]. In this context,
the similarity of melatonin, its metabolites and other
indolic as well as kynuric antioxidants to natural or syn-
thetic electron and proton carriers such as ubiquinones
and nitrones is remarkable and they all may be considered
to act primarily as mitochondria-targeted bioenergetic
agents [40,76,217]. By enabling, catalyzing and safe-
guarding single electron transfer reactions these mito-
chondrial antioxidants may enhance energy and oxygen
metabolism efficacy and thereby act as very potent adap-
togenic agents with profound neuroprotective activity
[40,76,217]. Much like melatonin, nitrone and quinone
compounds can prevent the mitochondrial toxicity of Aβ
and thereby increase cellular viability and survival
[28,91,120,217]. Since neuronal energy metabolism is
strongly affected by Aβ [28,91,120,217], the preservation
of mitochondrial activity may be one of the most impor-
tant features shared by indole, nitrone and quinone anti-
oxidant agents [28,91,120,217]. In aging and dementia,
melatonin as well as any other mitochondrial metabolism
modifier with a similar pharmacological profile may be
able to restore brain energy supply, an activity that would
distinguish these compounds from conventional antioxi-
dant agents devoid of such neurotrophic effects. Catalytic
antioxidants acting at the mitochondrial level would
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thereby allow for enhanced neuronal survival and synap-
togenesis even under a severe amyloid burden
[28,40,70,76,217]. Since mitochondria are a primary
source and target of oxidative stress and damage, much of
the neuroprotection seen after melatonin treatment in
experimental models of AD, PD and HD may be some-
how related to the specific effects of this indoleamine and
its kynuramine metabolites in maintaining energy and
oxygen metabolism of the organelles even under adverse
conditions related to the neuropathology of these dis-
eases.

Melatonin and amyloid-β: antioxidant, antifibrillogenic 
and cytoskeletal effects
Several actions of melatonin have been described which
antagonize the deleterious effects of Aβ. These actions
concern different molecular processes, but may be interre-
lated; however, the possible connections require further
investigation. One might classify the effects of melatonin
as (i) antioxidant, including influences on mitochondrial
metabolism, (ii) antifibrillogenic and (iii) cytoskeletal,
including the suppression of protein hyperphosphoryla-
tion. Some of these actions were demonstrated at ele-
vated, pharmacological concentrations, but any judgment
of the relevance of such findings has to consider the rela-
tively high rates of melatonin secretion into the CSF,
uptake into the brain tissue and, presumably also, the
metabolization to other protective compounds, such as
the kynuramines AFMK and AMK [40,41], processes
which are impaired during aging and in neurodegenera-
tive diseases.

Attempts of using melatonin for antagonizing Aβ effects
were based on the initial observation that the peptide
induces oxidative stress, which leads to damage of mito-
chondrial DNA, formation of protein carbonyl, lipid per-
oxidation, changes in mitochondrial membrane structure,
changes in respiration and breakdown of the mitochon-
drial membrane potential, induction of antioxidant
enzymes and heat-shock proteins [3,106,218-224]. Nota-
bly, many of these findings were mitochondria-related.
The pioneering work of Pappolla's research group first
published compelling evidence for potent neuroprotec-
tion against the toxicity of Aβ in AD [218,225]. In fact,
application of melatonin prevented the death of neurob-
lastoma cells exposed to Aβ peptide [91,142,225,226].
Similar results were obtained in astroglioma cells [227],
findings of potential interest with regard to astrocyte-neu-
ron interactions [228]. The indoleamine significantly
reduced several features of apoptosis, like cellular shrink-
age or formation of membrane blubs [225]. Additionally,
lipid peroxidation in the cultured neuroblastoma cells
was diminished, a finding first interpreted in terms of
scavenging of free radicals generated by Aβ. However, and
in accordance with our present point of view, the situation

appears more complicated, since lipid peroxidation can
also be a secondary consequence of mitochondrial dys-
function, and a support of mitochondrial integrity and
electron flux should diminish the secondary formation of
free radicals. It should also be noted that protection from
Aβ-induced oxidative stress was achieved by the mela-
tonin metabolite AFMK, too [164]. The relatively high
concentrations required in this case may be seen on the
background of the redox properties of AFMK, which pref-
erentially undergoes two-electron transfer reactions and,
therefore, is a less potent radical scavenger than its prod-
uct AMK; this type of experiments should be repeated with
AMK, which correspondingly disposes of a higher protec-
tive potential in mitochondria [cf. ref. [40]].

The second type of melatonin's antiamyloid actions con-
cerns fibrillogenesis. Melatonin was shown by different
techniques to inhibit the formation of amyloid fibrils,
more efficiently than other, classical antioxidants
[28,140,144,229]. Such effects were seen with both Aβ1–40
and Aβ1–42 peptides [229]. A structural analog of mela-
tonin, indole-3-propionic acid, sharing the property of a
good radical scavenger [230], had a similar or even higher
antifibrillogenic activity [142,144]. Despite the similari-
ties in redox chemistry, the effects on protein structure
cannot be easily attributed to radical scavenging and are
by far not understood. Notwithstanding, inhibition of
amyloid plaque deposition by melatonin was also
observed in vivo, using a transgenic mouse model
[145,146]. Therefore, the antifibrillogenic actions are not
just in vitro effects, although relatively high, pharmacolog-
ical doses were required in the transgenics. However,
despite the obvious histologically and behaviorally evi-
dent protection in these independent studies, antiamy-
loidogenic effects were not seen when the treatment was
started in old transgenic mice, after 14 months of life
[231]. In other words, after the disease has reached a cer-
tain severity, a substance like melatonin is no longer capa-
ble of efficiently antagonizing amyloid deposition and
amyloid-dependent damage. However, nothing else
should have been expected, after numerous amyloid
plaques have been formed and neuronal damage has pro-
gressed. Consequently, one should see the value of mela-
tonin mainly in its preventive potential rather than
pinning unrealistic hopes on curative effects in later stages
of disease. This does, however, not exclude symptomatic
alleviations even in the progressed disease, concerning
sleep, sedation, sundowning etc. (see below).

In the last years, the influence of lipoproteins on fibrillo-
genesis has received particular attention. Lipoproteins
were found to interact with soluble Aβ, and levels of the
free peptide may be crucial for parenchymal deposition
[232]. However, the respective composition of lipopro-
teins including their content in cholesterol and apolipo-
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protein subtypes can modulate fibrillogenesis. Melatonin
was shown to reverse the particularly profibrillogenic
activity of apolipoprotein E4 and to antagonize the neu-
rotoxic combinations of Aβ and apoE4 or apoE3 [140].
ApoE4, which aggravates Aβ effects, is also produced by
astrocytes. A mutual potentiation between Aβ protein and
apoE4 may, thus, be regarded as particular kind of astro-
cyte-neuron interactions in AD [228].

The third aspect, suppression of protein hyperphosphor-
ylation and cytoskeletal disorganization, has largely been
studied in experimental systems aiming to mimic by phar-
macological means the changes which are typical of AD.
Okadaic acid, a potent inhibitor of protein phosphatases
1 and 2A, not only induced cell death in two lines of neu-
roblastoma cells, but also mitochondrial dysfunction
[82,86,87] and other characteristics of AD cytoskeletal
changes (see above). Addition of melatonin prevented the
okadaic acid-induced decline in cell viability and mito-
chondrial metabolic activity, attenuated lipid peroxida-
tion and protected cytoskeletal integrity [86,87]. Similar
data were obtained in neuroblastoma N2a cells, using cal-
yculin A, another inhibitor of the same protein phos-
phatases. This study revealed an activation of GSK-3
(glycogen synthase kinase 3), a redox-controlled enzyme
involved in various regulatory mechanisms of the cell
[233]. Melatonin decreased not only oxidative stress and
tau hyperphosphorylation, but also reversed GSK-3 acti-
vation, thereby showing that melatonin's actions
exceeded its antioxidant effects, and also interfered with
the phosphorylation system, especially stress kinases
[233]. Tyrosine kinase (trk) receptors, representing other,
particularly important elements of the phosphorylation
system, and neurotrophins were also shown to be affected
by oxidotoxins, including Aβ. In neuroblastoma cells,
melatonin was capable of normalizing trk and neuro-
trophin expression [109]. In other experiments, tau hyper-
phosphorylation was induced by wortmannin [234] and
isoproterenol [235]; again, melatonin was found to atten-
uate this process.

Melatonin levels in Alzheimer's disease
Several studies show that melatonin levels are lower in AD
patients compared to age-matched control subjects [236-
241]. Decreased CSF melatonin levels observed in AD
patients reflect a decrease in pineal melatonin production
rather than a diluting effect of CSF. CSF melatonin levels
decrease even in preclinical stages when the patients do
not manifest any cognitive impairment (at Braak stages I-
II), suggesting thereby that the reduction in CSF mela-
tonin may be an early marker for the first stages of AD
[242,243]. The reduction in nocturnal melatonin levels
with the abolition of diurnal melatonin rhythmicity may
be the consequence of dysfunction of noradrenergic regu-
lation and depletion of the melatonin precursor 5-HT by

increased MAO-A activity, as already seen in the earliest
preclinical AD stages [242]. Alternately, changes in the
pathways of light transmission, from physical properties
of the dioptric apparatus to a defective retino-hypotha-
lamic tract or SCN-pineal connections have been dis-
cussed as possible reasons of declines in melatonin
amplitude and corresponding changes in the circadian
system [244]. One should, however, be aware that light is
inhibitory to the pineal [35,52], so that dysfunction in the
transmission of light signals would not easily explain a
decrease in melatonin. In any case, the changes in mela-
tonin secretion could contribute to some frequent symp-
toms like sleep disruption, nightly restlessness and
sundowning seen in AD patients [245]. Other reasons
may be sought in an altered metabolism of AD patients,
e.g., in relation to known genetic predispositions. The
presence of apolipoprotein E-ε4/4, which is associated
with enhanced Aβ toxicity and more rapid disease pro-
gression, also leads to considerably stronger declines in
melatonin in the respective AD subpopulation than in
patients with other apoE subtypes [238]. From this point
of view, the relative melatonin deficiency may appear as a
consequence rather than one of the causes of AD,
although the loss in melatonin may aggravate the disease.
Decreased nocturnal melatonin levels were also shown to
correlate with the severity of mental impairment of
demented patients [246].

Sleep-wake and circadian rhythm abnormalities in AD 
patients
Despite the multifactorial etiology, the pronounced
decline in nocturnal melatonin synthesis is common to
AD patients. Therefore, the circadian system is impaired,
and the circadian sleep-wake cycle is more strongly dis-
turbed than in age-matched non-demented control sub-
jects. The sleep-wake disturbances become more marked
with progression of the disease. With the progressing neu-
rodegeneration, the neuronal basis of the circadian system
can be increasingly affected. Sleep-wake disturbances of
elderly AD patients finally result from changes at different
levels, such as reductions in the strength of environmental
synchronizers or their perception, a lack of mental and
physical activity, age- or disease-induced losses of func-
tionality of the circadian clock. Cross-sectional studies
have shown that sleep disturbances are associated with
increased memory and cognitive impairment in AD
patients [247].

AD patients with disturbed sleep-wake rhythms did not
only exhibit reduced amounts of melatonin secreted, but
also a higher degree of irregularities in the melatonin pat-
tern, such as variations in phasing of the peak [239].
Therefore, the melatonin rhythm has not only lost signal
strength in clock resetting, but also reliability as an inter-
nal synchronizing time cue. Loss or damage of neurons in
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the hypothalamic SCN and other parts of the circadian
timing system may account for the circadian rhythm
abnormalities seen in demented patients [240,248,249],
especially as the number of neurons in the SCN of AD
patients is reduced [248,250,251].

Clinical findings strongly argue in favor of disruption of
the circadian timing system in AD, since numerous overt
rhythms are disturbed, including body temperature and
concentrations of other hormones such as glucocorticoids
[252,253]. Circadian alterations, which are detectable at
an advanced stage of AD, also concern phase relation-
ships, such as the phase difference between the rest-activ-
ity and core body temperature cycles, the last one being
significantly delayed [248,249]. Another criterion for a
weakened circadian system may be seen in the possibility
of improving rhythmicity in AD patients by well-timed
light treatment [254]. In practical terms, this may be
important as AD patients were found to be less exposed to
environmental light than their age-matched controls
[255], so that dysfunction of the SCN may be aggravated
by low strength of the synchronizing signal light [256]. In
other words, the AD patient is gradually deprived of the
photic input and even more of the non-photic, darkness-
related internal signal melatonin.

A chronobiological phenomenon in AD observed in con-
junction with disturbances of the sleep-wake cycle is "sun-
downing ", symptoms appearing in the late afternoon or
early evening, which include reduced ability to maintain
attention to external stimuli, disorganized thinking and
speech, a variety of motor disturbances including agita-
tion, wandering and repetitious physical behaviours and
perceptual and emotional disturbances [254,257]. A
chronobiological approach with bright light, restricted
time in bed and diurnal activity represents a therapeutic
alternative for the management of sleep-wake disorders in
AD patients [256]. Indeed bright light exposure in selected
circadian phases markedly alleviated sundowning symp-
toms, such as wandering, agitation and delirium and
improved sleep wave patterns in AD patients [258-260].

Melatonin as a therapeutic agent for Alzheimer's disease
As outlined, melatonin acts at different levels relevant to
the development and manifestation of AD. The antioxi-
dant, mitochondrial and antiamyloidogenic effects may
be seen as a possibility of interfering with the onset of the
disease, although a balanced judgment requires due cau-
tion. While there can be no doubt that melatonin antago-
nizes Aβ toxicity and fibrillogenesis in vitro, at
pharmacological levels also in vivo (see above), the begin-
ning of treatment will be decisive [cf. ref. [231]]. One can-
not expect a profound inhibition of disease progression
once a patient is already in an advanced demented state,
notwithstanding a very few case reports with anecdotal

evidence of slight mental improvements [cf. refs.
[28,261]]. Whether melatonin exerts a preventive effect, is
a hope, but can be judged only after extensive epidemio-
logic studies. The possibility exists that melatonin is par-
ticularly useful in a subpopulation which is more
susceptible to oxidative stress for reasons of genetic pre-
dispositions, such as defects in mitochondrial genes, apol-
ipoprotein variants etc., and an epidemiologic evaluation
will have to consider this complexity.

At least, melatonin has several obvious advantages over
other comparable compounds, in particular, most other
antioxidants. Because of its balanced amphiphilicity, it
crosses the blood-brain barrier and enters any cellular
compartment, including mitochondria [28,40,262].

The question whether melatonin has a causal value in pre-
venting or treating AD, affecting disease initiation or pro-
gression of the neuropathology and the driving
mechanisms, remains to be answered in future studies.
Double-blind multicenter studies are urgently needed to
further explore and investigate the potential and useful-
ness of melatonin as an antidementia drug. Its apparent
usefulness in symptomatic treatment, concerning sleep,
sundowning etc., even in a progressed state, further under-
lines the need for such decisive studies.

Melatonin as a sleep-promoting agent has been tried in a
small non-homogenous group of elderly patients with
primary insomnia (3 mg p.o. for 21 days) associated with
dementia or depression. Seven out of ten dementia
patients having sleep disorders treated with melatonin (3
mg p.o. at bed time) showed a significant decrease in sun-
downing and reduced variability of sleep onset time
[263]. In another study, administration of 6 mg of mela-
tonin to 10 individuals with mild cognitive impairment
improved sleep, mood, and memory [264]. Similar obser-
vations were made by other groups, too. Seven AD
patients who exhibited irregular sleep-wake cycles, treated
with 6 mg for 4 weeks, showed a significantly reduced per-
centage of nighttime activity compared to a placebo group
[49]. The efficacy of 3 mg melatonin/day at bedtime in
improving the sleep and alleviating sundowning was
shown in 11 elderly AD patients [265] and in 7 patients of
another study [266]. Long-term administration of mela-
tonin in the dose of 6–9 mg to 14 AD patients with sleep
disorders and sundowning agitation for a period of 2–3
years improved sleep quality [267]. Sundowning, diag-
nosed clinically in all patients examined was no longer
detectable in 12 patients. Another study on 45 AD
patients with sleep disturbances, in which 6 mg of mela-
tonin was given daily for 4 months, confirmed sleep
improvement and suppression of sundowning [268].
Along with these ameliorations, which can already be
seen as an important improvement, also with regard to
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the efforts of a caregiver, the evolution of cognitive altera-
tions in melatonin receiving patients seemed to be halted
in several individuals, as compared to AD patients not
receiving melatonin.

The major findings were confirmed in a double-blind
study, with regard to sleep-wake rhythmicity, cognitive
and non-cognitive functions [269]. In a larger multi-
center, randomized, placebo-controlled clinical trial, two
dose formulations of oral melatonin were applied: 157
subjects with AD and nighttime sleep disturbance were
randomly assigned to 1 of 3 treatment groups: (i) placebo,
(ii) 2.5 mg slow-release melatonin, or (iii) 10 mg mela-
tonin given daily for 2 months [270]. In this study, a sta-
tistical problem became apparent, since melatonin
facilitated sleep in a certain number of individuals, but
collectively the increase in nocturnal total sleep time and
decreased wake after sleep onset, as determined on an
actigraphic basis, were only apparent as trends in the
melatonin-treated groups. On subjective measures, how-
ever, caregiver ratings of sleep quality showed significant
improvement in the 2.5 mg sustained-release melatonin
group relative to placebo [270]. Large interindividual dif-
ferences between patients suffering from a neurodegener-
ative disease are not uncommon. It should be also taken
into account that melatonin, though having some sedat-
ing and sleep latency-reducing properties, does not prima-
rily act as a sleeping pill, but mainly as a chronobiotic.
Since the circadian oscillator system is obviously affected
in AD patients showing severe sleep disturbances, the effi-
cacy of melatonin should be expected to also depend on
disease progression.

The mechanisms that account for these therapeutic effects
of melatonin in AD patients remain to be elucidated.
Since the symptomatic actions become relatively rapidly
apparent, they should be of mainly chronobiological
nature. Melatonin treatment has been shown to promote
mainly non-REM sleep in the elderly [56] and is found
beneficial in AD by supporting restorative phases of sleep.
Whether this includes in AD additional mechanisms
known from non-demented elderly humans or animals,
such as augmented secretion of GH [271] and neuro-
trophins [272], remains to be analyzed. The chronobio-
logical aspect is underlined by a study on golden
hamsters, in which melatonin was able to protect against
the circadian changes produced by Aβ25–35 microinjection
into the SCN [273]. From this point of view, changes in
melatonin receptor density in AD – increases in arterial
MT1[274] and decreases in hippocampal MT2 [275] – may
be less important than a remaining responsiveness of the
SCN, perhaps in conjunction with the sedating effects of
melatonin based on downregulation of neuronal NO syn-
thase and actions on the GABAergic system [276]. Regard-
less of the mechanistic details, all pertinent data

unanimously direct to a sleep-promoting effect of mela-
tonin in AD patients, as generally in elderly insomniacs
[review: ref. [277]].

Melatonin in Parkinson's disease
Parkinsonism, the other major neurodegenerative disease,
is caused by a progressive loss of dopaminergic neurons in
the substantia nigra. We do not refer to this disease with
the intention of extensively reviewing here all its facets,
but rather to outline some parallels with and differences
to AD concerning the actions and applicability of mela-
tonin. Oxidative stress was shown to play a major role in
PD, too [278,279]. In post-mortem samples of the sub-
stantia nigra from PD patients, lipid peroxidation and oxi-
dative modification of proteins and DNA were increased
[26,280,281], whereas GSH was decreased [282]. A partic-
ular problem of vulnerability of the substantia nigra neu-
rons is resulting from iron incrustations in the dopamine-
derived melanins. The high levels of iron [280] are redox-
active and generate hydroxyl radicals by the Fenton reac-
tion. This situation appears to be aggravated by an
enhanced rate of H2O2 formation, to which dopamine
oxidation by MAO contributes [278].

Animal models of PD frequently use 6-hydroxydopamine
(6-OHDA) to destroy the nigrostriatal pathway, or the
neuronal oxidotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP). Behavioral and motor deficits in rats
or monkeys, such as akinesia, rigidity and tremor, remi-
niscent of those seen in PD patients [283], are commonly
used to study the efficacy of therapeutic agents used in this
disease.

MPTP administered to rats is mainly taken up by astro-
cytes and is metabolized into the 1-methyl-4-phenylpy-
ridinium ion (MPP+). This cation is selectively taken up by
dopaminergic neurons. Its actions are predominantly
based on redox cycling involving redox-active enzymes
[284] and, in particular, mitochondrial effects especially
at complex I, thereby causing increased generation of free
radicals, depletion of NAD and ATP and apoptosis
[285,286]. In the 6-OHDA model, the neurotoxin acts
selectively on nigrostriatal neurons because it is substrate
of the reuptake transporter, and induces cell death by
increased generation of free radicals due to autoxidation.
In this context, one of the limits of l-DOPA medication
may be noticed, namely, the iron-mediated hydroxylation
of dopamine to 6-OHDA in the substantia nigra of PD
patients [287].

Among the studies undertaken in animal models, some of
them support the possible beneficial effects of melatonin
in arresting the neurodegenerative changes, while others
report adverse effects of melatonin in exacerbating motor
deficits. In an MPTP model, melatonin counteracted the
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induced lipid peroxidation in striatum, hippocampal, and
midbrain regions [288]. In a study using 6-OHDA, mela-
tonin inhibited lipid peroxidation in cultured PC12 cells
[289], effects that were associated with rises in antioxidant
enzymes. Prevention of MPTP-induced dopaminergic cell
death by melatonin was demonstrated by determining
tyrosine hydroxylase levels and the number of normal DA
cells [290].

The major MPP+ effect, inhibition of complex I, leads to
enhanced electron leakage, decrease of mitochondrial
electron flux and ATP deficiency. Rises in complex I activ-
ity, as observed with melatonin [201-203,205], may
antagonize this action and contribute to protection. Apart
from such effects seen in submitochondrial particles,
direct interactions of melatonin at N2 of complex I have
been discussed [40,41,76]. In unilaterally 6-OHDA-
injected, hemi-parkinsonian rats, protective effects by
melatonin were also attributed to normalizations of com-
plex I activity [291].

One should be aware that electron leakage at complex I
causes secondary oxidative stress, by combination of the
superoxide anions hereby formed with NO, to give perox-
ynitrite and radicals deriving from it (see above); in other
words, a connection between mitochondrial dysfunction
and the excitational vulnerability of the neuron becomes
evident. In this regard, suppression of NO formation and
scavenging of reactive nitrogen species by melatonin and
its metabolite AMK [review: ref. [40]] should additionally
support cell survival, along with other protective effects,
such as upregulation of the antioxidant enzymes
Cu,ZnSOD, MnSOD, GPx, which has been demonstrated
in cultured dopaminergic cells, too [289].

While complex I inhibition is a plausible cause of neuro-
degeneration in the toxicological animal models, it would
be of particular importance to know whether mitochon-
drial dysfunction is relevant in the PD patient. In fact,
decreases in complex I activity were reported for mito-
chondria from platelets and in the substantia nigra of par-
kinsonian individuals [292-294]. However, recent
investigations did not reveal any differences in complex I,
II/III and IV activities in mitochondria from platelets
[295], so that a genetically based dysfunction in electron
transport is not evident. However, this does not entirely
rule out striatal mitochondrial dysfunction in advanced
stages of PD, because of an impairment by iron-mediated
oxidative stress.

The pleiotropy of melatonin's antioxidant and otherwise
protective effects is, on the one hand, a hindrance for
relating cell survival to a particular, single mechanism in
a given experimental situation, but, on the other hand,
may give an impression of the powerful concerted actions

of this indoleamine. Protection by melatonin was demon-
strated in a variety of experimental PD models. [reviews:
refs. [8,9,33]]. If studied in detail, the phenomenology of
protection is complex, and melatonin may have acted on
multiple targets, even though they may be partially inter-
related. MPTP-induced stress was antagonized by mela-
tonin at the levels of mitochondrial radical accumulation,
mitochondrial DNA damage as well as breakdown of the
proton potential [296]. As already outlined in the context
of AD, cytoskeletal abnormalities are associated and, to a
certain degree, caused by oxidative stress, but represent an
own type of phenomenology, with additional regulatory
mechanisms and additional sites of possible intervention.
Lewy bodies, which are considered cytopathologic mark-
ers of parkinsonism, comprise abnormal arrangements of
tubulin and microtubule-associated proteins, MAP1 and
MAP2. Melatonin effectively promotes cytoskeletal rear-
rangements and was, thus, assumed to have a potential
therapeutic value in the treatment of parkinsonism, and,
perhaps, generally in dementias with Lewy bodies [297].

Recently, a possible melatonin-sensitive link between
mitochondria, hyperphosphorylation and neuronal
apoptosis became apparent, with general implications for
mental deficits. In a study conducted in cerebellar granu-
lar neurons, melatonin did not only antagonize MPP+-
induced cell death, but also activation of Cdk5 and cleav-
age of p35 to the hyperactivator p25 [298]. This protein
kinase which has received its name for reasons of homol-
ogy, but is unrelated to the cell cycle, seems to play an
important role in neuronal function and plasticity. Dys-
regulation of Cdk5 and, in particular, rises in p25 have
not only been found to occur in parkinsonism, but also in
other neurodegenerative disorders including AD [299-
301]. Moreover, inflammatory processes in the brain were
shown to be associated with p25-dependent upregulation
of Cdk5, along with tau hyperphosphorylation [302].
These findings are not only relevant in terms of neurode-
generation, but also with regard to cognitive processes in
general. Cdk5 was shown to be required for associative
learning, and its transient activation by p25 facilitates hip-
pocampal long-term potentiation, in conjunction with
increases in the density of synapses and dendritic spines
[303-305]. However, this desirable effect on neuronal
plasticity is turned into the opposite as soon as p25 for-
mation and, thus, Cdk5 activation takes place for an
extended period of time: a prolongued production of p25
led to synaptic and neuronal loss, impaired long-term
potentiation and, consequenly, cognitive deficits
[305,306]. Whether or not melatonin used at pharmaco-
logical concentrations in the MPP+ study [298] influences
p25 and Cdk5 activity indirectly via mitochondrial
actions and/or directly by receptor-mediated signal trans-
duction pathways, remains to be elucidated.
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While all experiments on MTPT- or 6-OHDA-induced oxi-
dative stress unanimously report protection by melatonin
[288-290,307], the value of the pineal hormone may be
judged entirely differently under systemic aspects. In rats
treated with 6-OHDA or MPTP, pinealectomy or suppres-
sion of melatonin synthesis by bright light caused a remis-
sion of symptoms [308]. The view that melatonin may be
unfavorable in the case of parkinsonism, was further sup-
ported by respective experiments using the (putative)
melatonin receptor antagonists ML-23 and S-20928,
which, again, improved motor functions and, in the case
of ML-23, prevented 6-OHDA-induced mortality
[309,310].

These findings show that antioxidative protection and
even potentially beneficial mitochondrial effects do not
suffice for judging the value of a drug under systemic
aspects. The multiplicity of melatonin's actions, including
the receptor-mediated ones, has to be a matter of respon-
sible caution.

Melatonin secretion in parkinsonism
Melatonin secretion patterns have been studied in
patients suffering from PD. A phase advance of the noctur-
nal melatonin maximum was noted in L-DOPA-treated
but not in untreated patients, as compared to control sub-
jects [311-313]. Under medication with L-DOPA, daytime
melatonin was additionally increased [313], a finding dis-
cussed in terms of an adaptive mechanism in response to
the neurodegenerative process and possibly reflecting a
neuroprotective property of melatonin [313].

In rats, fluctuations in serum melatonin levels were also
related to variations in motor function and attributed to
the interaction of monoamines with melatonin in the stri-
atal complex [314]. Melatonin's inhibitory effect on
motor activity has been suggested as one of the possible
causes for the wearing-off episodes seen during drug treat-
ment of parkinsonism. Electrical stimulation of internal
globus pallidus inhibited an increase in daytime mela-
tonin in PD patients as compared to healthy subjects
[315]. Deep-brain stimulation of the internal globus pal-
lidus had been shown to improve motor symptoms and
complications in patients with Parkinson's disease [316].

Melatonin's effects on sleep disturbances in Parkinson's 
disease
Studies undertaken in elderly insomniacs have convinc-
ingly demonstrated that melatonin can increase sleep effi-
ciency and decrease nighttime activity [317,318].
Administration of melatonin in 5 mg/day for 1 week
reduced the nocturnal wake time for about 20 minutes in
eight patients with PD [319]. In a recent double-blind,
placebo-controlled study on 40 subjects conducted over
10 weeks, Dowling et al. [320] noted that administration

of a higher dose of melatonin, 50 mg/per day, increased
actigraphically scored total nighttime sleep in PD patients,
when compared with 5 mg or placebo-treated patients.
Subjective reports of overall sleep disturbance improved
significantly with 5 mg of melatonin compared to 50 mg
or placebo [320]. This study may indicate that very high
doses of melatonin can be tolerated in PD patients over a
10-week period as in healthy older adults. Nevertheless,
the caveat from the melatonin-antagonist studies (see
above) remains and should be taken serious.

Melatonin in experimental models of Huntington's disease
Among neurodegenerative disorders, HD is the most
clearly mitochondria-related disease. Primary cause is a
mutation in the huntingtin gene, leading to an extended
polyQ repeat, which causes protein misfolding and sec-
ondary effects hereof. Although huntingtin misfolding
has multiple consequences, including some concerning
iron metabolism [321], mitochondrial dysfunction is par-
ticularly fatal, in an excitation-dependent way. Under
high calcium load, mitochondria carrying huntingtin with
an extended polyQ domain are no longer able to cope
with calcium uptake; as a result, complex II/III activity is
impaired [322,323], the proton potential breaks down,
and mtPTP-dependent cytochrome c release induces
apoptosis [324,325]. Ca2+ dependence explains the rela-
tionship to NMDA receptor-mediated excitation, and the
selective vulnerability of frequently excited neurons carry-
ing this receptor [326,327]. For these reasons, excitotoxic-
ity by quinolinic acid, which also acts via the NMDA
receptor, has been used as a model of HD [328-331].
Additionally, quinolinic acid has strong prooxidant prop-
erties when complexed with iron [332], a finding that is,
however, uncertain with regard to its in vivo relevance. An
alternate experimental model, using 3-nitropropionic
acid as a blocker at complex II [329,333,334], acts prima-
rily at the mitochondrial level, but is, in our experience,
sometimes affected by the problem of ATP deficiency as
the primary cause of cell death. One should clearly see the
differences between the two models. Quinolinic acid acts
upstream of the mutated protein, and most of the oxida-
tive stress measured at low dosage of the drug sufficient
for causing excitotoxicity may be regarded as side or sec-
ondary effects in the compromised cell. 3-Nitropropionic
acid aims to mimic the mitochondrial blockade caused by
misfolded huntingtin under calcium overload. In this
case, oxidative stress can result from multiple sources and
may include enhanced electron leakage.

Melatonin was shown to prevent quinolinic acid-induced
lipid peroxidation in rat brain homogenates [335] and
cell death in the rat hippocampus [336]. Since some
effects of quinolinic acid differ from those of NMDA or
glutamate and are obviously not mediated by its receptor,
the question arose as to whether melatonin might protect
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mainly by antagonizing the NMDA receptor-dependent
actions of the neurotoxin. Both quinolinic acid and
NMDA induced lipid peroxidation in the rat hippocam-
pus, but only damage by quinolinic acid was inhibited by
melatonin; moreover, the action of melatonin was not
inhibited by the MT1/MT2 blocker luzindole [337]. There-
fore, one should conclude that, at least, the induction of
lipid peroxidation is not mediated via the NMDA recep-
tor, nor the antagonizing effect of melatonin via its mem-
brane receptors. Extensive lipid peroxidation after
administration of quinolinic acid was not only seen in
hippocampal, but also striatal and globus pallidum
regions, again antagonized by melatonin, which addition-
ally attenuated neurobehavioral signs associated with the
neurotoxin [338]. In brain tissue culture, melatonin
antagonized the prooxidant effects of high doses of quin-
olinic acid, which strongly exceed the concentrations
required for excitotoxicity [339]. Lipid peroxidation
induced by 3-nitropropionic acid in synaptosomes of rat
striatal and cortical regions were attenuated by melatonin
[340]. Collectively, these results demonstrate the antioxi-
dant capacity of melatonin, but the relevance for HD may
greatly depend on the validity of the animal models for
fully describing the situation in the disease. Melatonin's
undoubtedly existing antiexcitotoxic properties are not
clearly apparent in studies focusing on lipid peroxidation.

Conclusion
The most striking feature of melatonin is its pleiotropy,
with regard to both target cells and mechanisms. Any con-
sideration of the possible value of melatonin has to take
this into account and to weigh advantages and eventual
disadvantages of effects exerted at the various levels of
action. A balanced and responsible view will only be
achieved if the meaning of the multiplicity of actions is
clearly seen and distinctions are made between the vari-
ous experimental systems and the relevance of their out-
come relative to the situation in a patient.

Without any doubt, melatonin is one of the most power-
ful antioxidants acting at various levels, from direct radi-
cal scavenging and enzymatic regulation of oxidant
formation to mitochondrial radical avoidance [40]. Addi-
tionally, indirect antioxidant effects are based on support
of appropriate circadian phasing and antiexcitatory or
antiexcitotoxic actions [40,76]. On this background, it is
not surprising that melatonin has proved to be protective
in numerous experimental systems in which oxidative
stress is generated directly or indirectly, in cell and tissue
cultures, but also in animals. The prevention of apoptotic
or necrotic cell death can be partially attributed to this
property, but additional mitochondrial effects concerning
the support of electron flux, proton potential, ATP synthe-
sis and direct inhibition of the mtPTP [215] can be deci-
sive. In a neuron which is more vulnerable to

overexcitation for genetic reasons, antiexcitatory effects of
melatonin may already be sufficient for rescuing the cell.
One has to distinguish between these possibilities by
appropriate experimental approaches. In any of these
cases, in which either antioxidant – in the broadest sense
– antiexcitatory or antiapoptotic effects are prevailing,
melatonin will be found to be protective.

Nevertheless, one should not forget to what extent the
model systems represent artificial situations, which can
only partially portray the disease of a patient, and which
are frequently based on powerful pharmacological or tox-
icological means. Consequently, doses of melatonin
required are frequently in an upper pharmacological
range, too, setting limits to the judgment on melatonin's
value. With all due reserve, one can, however, state that
the application of melatonin is still a source of hopes for
possibilities of intervention, also because melatonin is
usually remarkably well tolerated by the treated individ-
ual, contrary to many other medications. Long-term
administration of oral melatonin of 30 or 60 mg per day
in a slow-release formulation was surprisingly unprob-
lematic and safe in ALS patients [341]. In a more recent
study on 31 ALS patients, even 300 mg of rectally admin-
istered melatonin was tolerated without problems for 2
years [342]. In numerous other studies mentioned in this
review, lower doses were also unproblematic.

Caution seems due at the present state of our knowledge
in the case of PD. At least in rat models, suppression of
membrane receptor-mediated melatonin effects alleviated
symptoms induced by 6-OHDA or MPP+ [308-310]. This
should be taken as a caveat with regard to eventual unfa-
vorable effects on disease progression. On the other hand,
it became obvious that melatonin is promoting sleep effi-
ciency also in PD patients. How risk and benefit have to
be weighed in humans suffering from this disease remains
to be elucidated.

Contrary to this, the balance seems to be largely in favor
of melatonin in the case of AD. Apart from the positive
effects in experimental systems concerning antagonism of
oxidative stress, fibrillogenesis and tangle formation, the
sleep-promoting effects – even if not demonstrable in all
individuals – and the suppression of sundowning are
important results justifying the use melatonin. Mild cog-
nitive improvements should also be welcome. The prob-
lem in AD remains to which extent melatonin may be
effective in retarding disease progression. One should not
expect too much in an advanced state. Nevertheless, the
preventive potential of melatonin deserves attention and
continued investigation. Even from a cautious and realis-
tic, perhaps even sceptical point of view, the findings
obtained to date should be taken as a good reason for
planning further multicenter trials, in which, however, the
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collectives of patients have to be large enough for distin-
guishing between different stages of disease progression.
Whether or not melatonin may have a preventive poten-
tial might become clear in subpopulations of high-risk
individuals, e.g. those with pertinent familial history or
carrying unfavorable apolipoprotein variants.

With regard to prevention, melatonin should also be seen
in the general context of aging. In the past, this has been a
matter of controversy, but mainly for methodological rea-
sons. Recent studies show that age-dependent patterns of
gene expression can be reverted to a more juvenile state in
the mouse CNS [343]. Life extension with melatonin is
possible in model animals, but melatonin's value is not
only a matter of life-span, but also of health during aging,
and pertinent observations have, in fact, been made in
mammals [262].
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